Chemical Constituents and Antimicrobial Properties of Saffron: A Review Article
Main Article Content
Abstract
Saffron is the product of the flower of Crocus sativus L. It is well known not only for its culinary uses but also for a wide range of medicinal benefits. The importance of saffron both in ancient medicine and modern pharmacology has attracted attention owing to the richness of its compounds-terpenes and their derivatives. Recent studies have increasingly focused on pharmacological aspects with antimicrobial and antiparasitic properties. This paper tries to make a synthesis based on existing research evidence concerning the antimicrobial and parasiticidal potential of saffron, noting where there are gaps in information and suggesting avenues for further investigation. Also, this paper shall try to make a synthesis based on existing research evidence on chemical constituents aspects of saffron and its antimicrobial property, giving it potentiality as a natural antimicrobial agent.
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
References
Abu-Izneid, Tareq., Rauf, A.., Khalil, A. A.., Olatunde, A.., Khalid, Ahood., Alhumaydhi, F.., Aljohani, Abdullah S. M.., Uddin, M. Sahab., Heydari, M.., Khayrullin, M.., Shariati, M.., Aremu, A.., Alafnan, A.., & Rengasamy, Kannan R. R.. (2020). Nutritional and health beneficial properties of saffron (Crocus sativus L): a comprehensive review. Critical Reviews in Food Science and Nutrition , 62 , 2683 - 2706 . http://doi.org/10.1080/10408398.2020.1857682
Amin, B., Hosseinzadeh, H. (2015). Saffron and its components, crocin, crocetin and safranal, as novel antidepressant and anti-anxiety compounds: A mechanistic review. Avicenna Journal of Phytomedicine, 5(5), 386–396.
Arias, L. S.., Pessan, J.., Vieira, Ana Paula Miranda., Lima, T. M. T.., Delbem, A.., & Monteiro, D. R.. (2018). Iron Oxide Nanoparticles for Biomedical Applications: A Perspective on Synthesis, Drugs, Antimicrobial Activity, and Toxicity. Antibiotics , 7 . http://doi.org/10.3390/antibiotics7020046
Balouiri, M.., Sadiki, M.., & Ibnsouda, S.. (2015). Methods for in vitro evaluating antimicrobial activity: A review☆. Journal of Pharmaceutical Analysis , 6 , 71 - 79 . http://doi.org/10.1016/j.jpha.2015.11.005
Batiha, Gaber El-Saber., Beshbishy, Amany Magdy., Wasef, Lamiaa G., Elewa, Y.., Al-Sagan, Ahmed A., El-Hack, M. A. Abd., Taha, A.., Abd-Elhakim, Yasmina M., & Devkota, Hari Prasad. (2020B). Chemical Constituents and Pharmacological Activities of Garlic (Allium sativum L.): A Review. Nutrients , 12 . http://doi.org/10.3390/nu12030872
Boskabady, M.., & Farkhondeh, T.. (2016). Antiinflammatory, Antioxidant, and Immunomodulatory Effects of Crocus sativus L. and its Main Constituents. Phytotherapy Research , 30 , 1072 - 1094 . http://doi.org/10.1002/ptr.5622
Cerdá-Bernad, Débora., Valero-Cases, E.., Pastor, J.., & Frutos, M.. (2020). Saffron bioactives crocin, crocetin and safranal: effect on oxidative stress and mechanisms of action. Critical Reviews in Food Science and Nutrition , 62 , 3232 - 3249 . http://doi.org/10.1080/10408398.2020.1864279
Choudhari, Amit., Mandave, Pallavi C.., Deshpande, M.., Ranjekar, P.., & Prakash, O.. (2020). Phytochemicals in Cancer Treatment: From Preclinical Studies to Clinical Practice. Frontiers in Pharmacology , 10 . http://doi.org/10.3389/fphar.2019.01614
Eghbaliferiz, Samira., & Iranshahi, M.. (2016). Prooxidant Activity of Polyphenols, Flavonoids, Anthocyanins and Carotenoids: Updated Review of Mechanisms and Catalyzing Metals. Phytotherapy Research , 30 , 1379 - 1391 . http://doi.org/10.1002/ptr.5643
Forni, C.., Facchiano, F.., Bartoli, M.., Pieretti, S.., Facchiano, A.., D'Arcangelo, D.., Norelli, S.., Valle, G.., Nisini, R.., Beninati, S.., Tabolacci, C.., & Jadeja, R.. (2019). Beneficial Role of Phytochemicals on Oxidative Stress and Age-Related Diseases. BioMed Research International , 2019 . http://doi.org/10.1155/2019/8748253
Gonelimali, Faraja., Lin, Jiheng., Miao, Wenhua., Xuan, Jinghu., Charles, F.., Chen, Meiling., & Hatab, S.. (2018). Antimicrobial Properties and Mechanism of Action of Some Plant Extracts Against Food Pathogens and Spoilage Microorganisms. Frontiers in Microbiology , 9 . http://doi.org/10.3389/fmicb.2018.01639
Hancock, R.., Haney, Evan F.., & Gill, Erin E.. (2016). The immunology of host defence peptides: beyond antimicrobial activity. Nature Reviews Immunology , 16 , 321-334 . http://doi.org/10.1038/nri.2016.29
Hashemi, M., & Hosseinzadeh, H. (2019). A comprehensive review on biological activities and toxicity of crocin. Food and Chemical Toxicology, 130, 44–60. https://doi.org/10.1016/j.fct.2019.05.019
Hosseini, A.., Razavi, B.., & Hosseinzadeh, H.. (2018). Saffron (Crocus sativus) petal as a new pharmacological target: a review. Iranian Journal of Basic Medical Sciences , 21 , 1091 - 1099 . http://doi.org/10.22038/IJBMS.2018.31243.7529
Hosseinzadeh, H.., & Nassiri-Asl, Marjan. (2013). Avicenna's (Ibn Sina) the Canon of Medicine and Saffron (Crocus sativus): A Review. Phytotherapy Research , 27 . http://doi.org/10.1002/ptr.4784
Islam, Rajib., Parves, Rimon., Paul, Archi Sundar., Uddin, N.., Rahman, Md Sajjadur., Mamun, A.., Hossain, Md Nayeem., Ali, Md. Ackas., & Halim, M.. (2020). A molecular modeling approach to identify effective antiviral phytochemicals against the main protease of SARS-CoV-2. Journal of Biomolecular Structure & Dynamics , 1 - 12 . http://doi.org/10.1080/07391102.2020.1761883
Khazdair, M.., Boskabady, M.., Hosseini, M.., Rezaee, R.., & Tsatsakis, Aristidis M.. (2015). The effects of Crocus sativus (saffron) and its constituents on nervous system: A review. Avicenna Journal of Phytomedicine , 5 , 376 - 391 . http://doi.org/10.22038/AJP.2015.4503
Khorasanchi, Z., Shafiee, M., Hosseini, H., Khazaei, M., & Khazaei, M. R. (2018). Crocus sativus L. (Saffron) and its Active Ingredients: Role in the Prevention and Treatment of Disease. Phytotherapy Research, 32(11), 2001–2018. https://doi.org/10.1002/ptr.6154
Khorrami, Sadegh., Zarrabi, A.., Khaleghi, M.., Danaei, M.., & Mozafari, M.. (2018). Selective cytotoxicity of green synthesized silver nanoparticles against the MCF-7 tumor cell line and their enhanced antioxidant and antimicrobial properties. International Journal of Nanomedicine , 13 , 8013 - 8024 . http://doi.org/10.2147/IJN.S189295
Ksouri, R.., Ksouri, W. M.., Jallali, Inès., Debez, A.., Magné, C.., Hiroko, Isoda., & Abdelly, C.. (2012). Medicinal halophytes: potent source of health promoting biomolecules with medical, nutraceutical and food applications. Critical Reviews in Biotechnology , 32 , 289 - 326 . http://doi.org/10.3109/07388551.2011.630647
Marchese, A.., Barbieri, R.., Coppo, E.., Orhan, I.., Daglia, M.., Nabavi, S.., Izadi, M.., Abdollahi, M.., Nabavi, S.., & Ajami, M.. (2017). Antimicrobial activity of eugenol and essential oils containing eugenol: A mechanistic viewpoint. Critical Reviews in Microbiology , 43 , 668 - 689 . http://doi.org/10.1080/1040841X.2017.1295225
Matica, M.., Aachmann, F.., Tøndervik, A.., Sletta, H.., & Ostafe, V.. (2019). Chitosan as a Wound Dressing Starting Material: Antimicrobial Properties and Mode of Action. International Journal of Molecular Sciences , 20 . http://doi.org/10.3390/ijms20235889
Mzabri, I.., Addi, M.., & Berrichi, A.. (2019). Traditional and Modern Uses of Saffron (Crocus Sativus). Cosmetics . http://doi.org/10.3390/cosmetics6040063
Nathwani, D.., Varghese, D.., Stephens, J.., Ansari, W.., Martin, Stephan., & Charbonneau, C.. (2019). Value of hospital antimicrobial stewardship programs [ASPs]: a systematic review. Antimicrobial Resistance and Infection Control , 8 . http://doi.org/10.1186/s13756-019-0471-0
Naylor, N.., Atun, R.., Zhu, N.., Kulasabanathan, K.., Silva, S.., Chatterjee, A.., Knight, G.., & Robotham, J.. (2018). Estimating the burden of antimicrobial resistance: a systematic literature review. Antimicrobial Resistance and Infection Control , 7 . http://doi.org/10.1186/s13756-018-0336-y
Ncc, Silva., & Júnior, Fernandes. (2010). Biological properties of medicinal plants: a review of their antimicrobial activity. Journal of Venomous Animals and Toxins Including Tropical Diseases , 16 , 402-413 . http://doi.org/10.1590/S1678-91992010000300006
Nieto, G.., Ros, G.., & Castillo, J.. (2018). Antioxidant and Antimicrobial Properties of Rosemary (Rosmarinus officinalis, L.): A Review. Medicines , 5 . http://doi.org/10.3390/medicines5030098
Pandey, A.., Kumar, Pradeep., Singh, Pooja., Tripathi, N. N.., & Bajpai, V.. (2017). Essential Oils: Sources of Antimicrobials and Food Preservatives. Frontiers in Microbiology , 7 . http://doi.org/10.3389/fmicb.2016.02161
Parham, Shokoh., Kharazi, Anousheh Zargar., Bakhsheshi‐Rad, H. R.., Nur, Hadi., Ismail, A.., Sharif, S.., Ramakrishna, S.., & Berto, F.. (2020). Antioxidant, Antimicrobial and Antiviral Properties of Herbal Materials. Antioxidants , 9 . http://doi.org/10.3390/antiox9121309
Rahaiee, S.., Moini, S.., Hashemi, M.., & Shojaosadati, S.. (2015). Evaluation of antioxidant activities of bioactive compounds and various extracts obtained from saffron (Crocus sativus L.): a review. Journal of Food Science and Technology , 52 , 1881-1888 . http://doi.org/10.1007/s13197-013-1238-x
Swamy, M. K.., Akhtar, M.., & Sinniah, U.. (2016). Antimicrobial Properties of Plant Essential Oils against Human Pathogens and Their Mode of Action: An Updated Review. Evidence-based Complementary and Alternative Medicine : eCAM , 2016 . http://doi.org/10.1155/2016/3012462
Tarantilis, P. A., Tsoupras, G., & Polissiou, M. G. (1995). Determination of saffron (Crocus sativus L.) components by GC-MS. Journal of Agricultural and Food Chemistry, 43(5), 1081–1085. https://doi.org/10.1021/jf00052a022
Vaou, Natalia., Stavropoulou, E.., Voidarou, C.., Tsigalou, C.., & Bezirtzoglou, E.. (2021). Towards Advances in Medicinal Plant Antimicrobial Activity: A Review Study on Challenges and Future Perspectives. Microorganisms , 9 . http://doi.org/10.3390/microorganisms9102041
Vincent, Marin., Vincent, Marin., Duval, Raphaël E.., Duval, Raphaël E.., Hartemann, P.., Engels-Deutsch, M.., & Engels-Deutsch, M.. (2018). Contact killing and antimicrobial properties of copper. Journal of Applied Microbiology , 124 . http://doi.org/10.1111/jam.13681
Wang, Linlin., Hu, Chen., & Shao, L.. (2017). The antimicrobial activity of nanoparticles: present situation and prospects for the future. International Journal of Nanomedicine , 12 , 1227 - 1249 . http://doi.org/10.2147/IJN.S121956
Zeinali, M.., Zirak, Mohammad., Rezaee, S.., Karimi, G.., & Hosseinzadeh, H.. (2019). Immunoregulatory and anti-inflammatory properties of Crocus sativus (Saffron) and its main active constituents: A review. Iranian Journal of Basic Medical Sciences , 22 , 334 - 344 . http://doi.org/10.22038/ijbms.2019.34365.8158
Zhang, Qiyu., Yan, Zhibin., Meng, Yueming., Hong, Xiangyu., Shao, G.., Ma, Junjie., Cheng, Xurui., Liu, Jun., Kang, Jian., & Fu, Caiyun. (2021). Antimicrobial peptides: mechanism of action, activity and clinical potential. Military Medical Research , 8 . http://doi.org/10.1186/s40779-021-00343-2