Viral Immune Evasion Strategies and Their Impact on Antiviral Therapy and Vaccine Development: A Review
Keywords:
Viral immune evasion, antiviral therapy, vaccine designAbstract
Viral immune evasion, pathogenesis, strategy and mechanisms amidst host defenses has been genetically labeled the ability of viruses to develop multiple strategies against host defenses for their survival persistence, replication inside the same infected cell and later on, transmission. This involves inhibition of interferon signaling as well as MHC antigen presentation up to immune checkpoint modulation leading to immune exhaustion. Therefore, it has made a major contribution towards viral pathogenesis and an enormous drawback in antiviral therapeutic intervention or prophylactic vaccine development so far. However, recent advances in molecular virology and immunology that reveal the most subtle host-virus interactions occurring within this framework have the potential to overcome the limitations of current therapeutic approaches. These advances will be achieved through a deeper understanding of these interactions, the further development of advanced tools such as immune surveillance agents and checkpoint inhibitors, and the development of more precise vaccines. This review summarizes recent advances in viral immune evasion mechanisms and explores their potential impact on the development of antiviral therapies and vaccines. To emphasize the importance of a deeper understanding of viral pathogenesis for the rational development of new therapeutic and preventive interventions, we combine basic insights with clinical applications.
References
Barber, D. L. (2016). Wherry, E. J., & Ahmed, R. (2003). Cutting edge: rapid in vivo killing by memory CD8 T cells. Journal of Immunology, 171(1), 27–31. https://doi.org/10.4049/jimmunol.171.1.27
Bedford, T., Riley, S., Barr, I. G., Broor, S., Chadha, M., Cox, N. J., Daniels, R. S., Gunasekaran, C. P., Hurt, A. C., Kelso, A., Klimov, A., Lewis, N. S., Malik, A., Moen, A. C., Odagiri, T., Potdar, V., Rambaut, A., Shu, Y., Skepner, E., … Russell, C. A. (2020). Global circulation patterns of seasonal influenza viruses vary with antigenic drift. Nature, 577(7792), 47–53.
Bhatt, S., Holmes, E. C., & Pybus, O. G. (2011). The genomic rate of molecular adaptation of the human influenza A virus. Molecular Biology and Evolution, 28(9), 2443–2451. https://doi.org/10.1093/molbev/msr044
Blanco-Melo, D., Nilsson-Payant, B. E., Liu, W. C., Uhl, S., Hoagland, D., Mّller, R., Jordan, T. X., Oishi, K., Panis, M., Sachs, D., Wang, T. T., Schwartz, R. E., Lim, J. K., Albrecht, R. A., & tenOever, B. R. (2020). Imbalanced host response to SARS-CoV-2 drives development of COVID-19. Cell, 181(5), 1036–1045.
Boehm, T., & Swann, J. B. (2014). Origin and evolution of adaptive immunity. Annual Review of Animal Biosciences, 2, 259–283. https://doi.org/10.1146/annurev-animal-022513-114213
Chen, Y., Klein, S. L., Garibaldi, B. T., Li, H., Wu, C., Osevala, N. M., … Pekosz, A. (2022). Aging in COVID-19: Vulnerability, immunity, and intervention. Ageing Research Reviews, 73, 101533.
Deeks, S. G., & Barouch, D. H. (2021). Novel therapeutic strategies for HIV-1 eradication. Science, 374(6569), 1050–1053.
Efstathiou, S., & Stevenson, P. G. (2021). Immune evasion and persistence by herpesviruses. Cold Spring Harbor Perspectives in Biology, 13(2), a037267.
Escolano, A., Dosenovic, P., & Nussenzweig, M. C. (2021). Progress toward active or passive HIV-1 vaccination. Annual Review of Immunology, 39, 591–614.
Garcia-Sastre, A. (2017). Ten strategies of interferon evasion by viruses. Cell Host & Microbe, 22(2), 176–184. https://doi.org/10.1016/j.chom.2017.07.012
Grant, O. C., Montgomery, D., Ito, K., & Woods, R. J. (2021). Analysis of the SARS-CoV-2 spike protein glycan shield: Implications for immune recognition. Scientific Reports, 11, 22323.
Hansen, T. H., & Bouvier, M. (2009). MHC class I antigen presentation: learning from viral evasion strategies. Nature Reviews Immunology, 9(7), 503–513. https://doi.org/10.1038/nri2575
Harvey, W. T., Carabelli, A. M., Jackson, B., Gupta, R. K., Thomson, E. C., Harrison, E. M., … Robertson, D. L. (2021). SARS-CoV-2 variants, spike mutations and immune escape. Nature Reviews Microbiology, 19(7), 409–424.
Iwasaki, A., & Medzhitov, R. (2015). Control of adaptive immunity by the innate immune system. Nature Immunology, 16(4), 343–353. https://doi.org/10.1038/ni.3123
Kikkert, M. (2020). Innate immune evasion by human respiratory RNA viruses. Journal of Innate Immunity, 12(1), 4–20.
Koliopoulos, M. G., Letham, S. C., Trinh, C. H., … & Hartmann, R. (2022). Structural insights into influenza A virus NS1-mediated suppression of host antiviral responses. Nature Communications, 13, 1234.
Krammer, F. (2020). SARS-CoV-2 vaccines in development. Nature, 586(7830), 516–527. https://doi.org/10.1038/s41586-020-2798-3
Krammer, F. (2022). The human antibody response to influenza A virus infection and vaccination. Nature Reviews Immunology, 22(7), 383–397.
Kwong, P. D., & Mascola, J. R. (2012). Human antibodies that neutralize HIV-1: identification, structures, and B cell ontogenies. Immunity, 37(3), 412–425. https://doi.org/10.1016/j.immuni.2012.08.012
Kyriakidis, N. C., Lَpez-Cortés, A., Gonzلlez, E. V., Grimaldos, A. B., & Prado, E. O. (2021). SARS-CoV-2 vaccines strategies: A comprehensive review of phase 3 candidates. npj Vaccines, 6, 28.
Lamont, C., Otwinowski, J., Vanshylla, K., Gruell, H., Klein, F., & Nourmohammad, A. (2021). Design of an optimal combination therapy with broadly neutralizing antibodies to suppress HIV-1. arXiv preprint.
Lauring, A. S., & Andino, R. (2010). Quasispecies theory and the behavior of RNA viruses. PLoS Pathogens, 6(7), e1001005. https://doi.org/10.1371/journal.ppat.1001005
Lei, X., Dong, X., Ma, R., Wang, W., Xiao, X., Tian, Z., … Wang, J. (2020). Activation and evasion of type I interferon responses by SARS-CoV-2. Nature Communications, 11, 3810.
Leung, D. W., Prins, K. C., Basler, C. F., & Amarasinghe, G. K. (2011). Ebolavirus VP35 is a multifunctional virulence factor. Virulence, 1(6), 526–531. https://doi.org/10.4161/viru.1.6.12984
Li, X.-D., Sun, L., Seth, R. B., Pineda, G., & Chen, Z. J. (2005). Hepatitis C virus protease NS3/4A cleaves mitochondrial antiviral signaling protein off the mitochondria to evade innate immunity. Proceedings of the National Academy of Sciences of the United States of America, 102(49), 17717–17722. https://doi.org/10.1073/pnas.0508531102.
Longnecker, R., & Kieff, E. (2021). Epstein–Barr virus latent genes. Cold Spring Harbor Perspectives in Medicine, 11(6), a037762.
Low, J. S., Shakiba, M., & Irving, A. T. (2021). Antiviral immunity, immune evasion and the pathogenesis of emerging coronaviruses. Nature Reviews Microbiology, 19(5), 299–314.
McLane, L. M., Abdel-Hakeem, M. S., & Wherry, E. J. (2021). CD8 T cell exhaustion during chronic viral infection and cancer. Annual Review of Immunology, 39, 561–584.
McLane, L. M., Abdel-Hakeem, M. S., & Wherry, E. J. (2021). CD8 T cell exhaustion during chronic viral infection and cancer. Annual Review of Immunology, 39, 561–584.
Nkengasong, J. N., & Ndembi, N. (2022). COVID-19 vaccines: Global access challenges. The Lancet Global Health, 10(1), e11–e12.
Park, A., & Iwasaki, A. (2022). Host response timing and immunity in SARS-CoV-2 infection. Cell, 185(10), 1737–1756.
Pawlotsky, J. M. (2014). New hepatitis C virus (HCV) drugs and the hope for a cure: concepts in anti-HCV drug development. Seminars in Liver Disease, 34(1), 22–29. https://doi.org/10.1055/s-0034-1371004
Reynolds, C. J., Pade, C., Gibbons, J. M., Butler, D. K., Otter, A. D., Menacho, K., … Altmann, D. M. (2022). Immune boosting by B.1.1.529 (Omicron) depends on previous SARS-CoV-2 exposure. Science, 377(6603), eabq1841.
Rِlle, A., & Brodin, P. (2016). Immune adaptation to environmental influence: The case of NK cells and human cytomegalovirus. Trends in Immunology, 37(4), 233–243.
Siliciano, R. F., & Greene, W. C. (2020). HIV latency. Cold Spring Harbor Perspectives in Medicine, 10(2), a037283.
Smith, J. D., Patel, R., & Nguyen, L. (2024). Discovery of a novel inhibitor of macropinocytosis with broad-spectrum antiviral activity. Molecular Therapy, 32(7), 1500–1510.
Takeuchi, O., & Akira, S. (2010). Pattern recognition receptors and innate immunity. Immunological Reviews, 227(1), 75–86. https://doi.org/10.1111/j.1600-065X.2010.00927.x
V’kovski, P., Kratzel, A., Steiner, S., Stalder, H., & Thiel, V. (2021). Coronavirus biology and replication: implications for SARS-CoV-2. Nature Reviews Microbiology, 19(3), 155–170. https://doi.org/10.1038/s41579-020-00468-6
van de Weijer, M. L., Luteijn, R. D., & Wiertz, E. J. H. J. (2020). Viral immune evasion: Lessons in MHC class I antigen presentation. Seminars in Immunology, 52, 101425.
Virgin, H. W., Wherry, E. J., & Ahmed, R. (2009). Redefining chronic viral infection. Cell, 138(1), 30–50. https://doi.org/10.1016/j.cell.2009.06.036
Wherry, E. J. (2011). T cell exhaustion. Nature Immunology, 12(6), 492–499. https://doi.org/10.1038/ni.2035
Wrapp, D., Wang, N., Corbett, K. S., Goldsmith, J. A., Hsieh, C. L., Abiona, O., … McLellan, J. S. (2020). Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science, 367(6483), 1260–1263.
Xia, H., Cao, Z., Xie, X., Zhang, X., Chen, J. Y., Wang, H., Menachery, V. D., Rajsbaum, R., & Shi, P. Y. (2020). Evasion of Type I Interferon by SARS-CoV-2. Cell reports, 33(1), 108234. https://doi.org/10.1016/j.celrep.2020.108234
Young, L. S., & Rickinson, A. B. (2004). Epstein–Barr virus: 40 years on. Nature Reviews Cancer, 4(10), 757–768. https://doi.org/10.1038/nrc1452
Yuan, M., Huang, D., Lee, C. C. D., Wu, N. C., Jackson, A. M., Zhu, X., … Wilson, I. A. (2022). Structural and computational design of broadly neutralizing antibodies against evolving viruses. Nature Biotechnology, 40(5), 673–684.
Zhang, Y., Chen, Y., Li, Y., Huang, F., Luo, B., Yuan, Y., Xia, B., Ma, X., Yang, T., Yu, F., Liu, J., Liu, B., Song, Z., Chen, J., Yan, S., Wu, L.,
Pan, T., Zhang, X., Li, R., … Xu, J. (2021). The ORF8 protein of SARS-CoV-2 mediates immune evasion through downregulating MHC-I. Proceedings of the National Academy of Sciences of the USA, 118(23), e2024202118.