Updates for Silver Nanoparticles' Applications in Medical Field: A Review Article
Main Article Content
Abstract
Nanoparticles are now at the leading center of attention in scientific investigations and applications when it comes to clinical practices, mainly within the scope of nanomedicine. They possess physicochemical properties that allow them to perform biologically in ways traditional materials would never achieve; hence, they enable useful advancements in drug delivery, diagnostics, and therapeutic strategies. For instance, Silver nanoparticles (AgNPs) attracted tremendous interest recently within the medical field owing to their unique properties that enable them to be used applicatively within diagnostics and therapeutics. Recent literature has placed a significant emphasis on Silver nanoparticles (AgNPs), primarily resulting from their new properties and huge potential applications in various biomedical fields, especially for cancer treatment. The current paper presents an overview of existing research concerning nanoparticles of all sorts, their applications, and technological advancement driven based on improving efficacy within the realm of medicine. It also compiles current findings on the preparation, modes of action, uses, and safety issues of AgNPs, focusing mainly on their role in fighting multidrug-resistant infections, cancer therapy, and possible toxicity.
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
References
Ahmed, Tarek A.., & Aljaeid, B.. (2016). Preparation, characterization, and potential application of chitosan, chitosan derivatives, and chitosan metal nanoparticles in pharmaceutical drug delivery. Drug Design, Development and Therapy , 10 , 483 - 507 . http://doi.org/10.2147/DDDT.S99651
Austin, Lauren A., Mackey, M.., Dreaden, E.., & El-Sayed, M.. (2014). The optical, photothermal, and facile surface chemical properties of gold and silver nanoparticles in biodiagnostics, therapy, and drug delivery. Archives of Toxicology , 88 , 1391 - 1417 . http://doi.org/10.1007/s00204-014-1245-3
Bayda, Samer., Hadla, Mohamad., Palazzolo, Stefano., Riello, P.., Corona, G.., Toffoli, G.., & Rizzolio, F.. (2017). Inorganic Nanoparticles for Cancer Therapy: A Transition from Lab to Clinic.. Current medicinal chemistry , 25 34 , 4269-4303 . http://doi.org/10.2174/0929867325666171229141156
Bruna, Tamara., Maldonado-Bravo, Francisca., Jara, P.., & Caro, Nelson. (2021). Silver Nanoparticles and Their Antibacterial Applications. International Journal of Molecular Sciences , 22 . http://doi.org/10.3390/ijms22137202
Burdușel, Alexandra-Cristina., Gherasim, Oana., Grumezescu, A.., Mogoantă, L.., Ficai, A.., & Andronescu, E.. (2018). Biomedical Applications of Silver Nanoparticles: An Up-to-Date Overview. Nanomaterials , 8 . http://doi.org/10.3390/nano8090681
Castillo-Henríquez, Luis., Alfaro-Aguilar, Karla., Ugalde-Álvarez, Jeisson., Vega-Fernández, Laura., Oca-Vásquez, Gabriela Montes de., & Vega-baudrit, J.. (2020). Green Synthesis of Gold and Silver Nanoparticles from Plant Extracts and Their Possible Applications as Antimicrobial Agents in the Agricultural Area. Nanomaterials , 10 . http://doi.org/10.3390/nano10091763
Chugh, Heerak., Sood, Damini., Chandra, Ishita., Tomar, Vartika., Dhawan, G.., & Chandra, R.. (2018). Role of gold and silver nanoparticles in cancer nano-medicine. Artificial Cells, Nanomedicine, and Biotechnology , 46 , 1210 - 1220 . http://doi.org/10.1080/21691401.2018.1449118
Chung, I.., Park, Inmyoung., Seung-hyun, K.., Thiruvengadam, M.., & Rajakumar, G.. (2016). Plant-Mediated Synthesis of Silver Nanoparticles: Their Characteristic Properties and Therapeutic Applications. Nanoscale Research Letters , 11 . http://doi.org/10.1186/s11671-016-1257-4
Dakal, T. C.., Kumar, Anu., Majumdar, R.., & Yadav, Vinod. (2016). Mechanistic Basis of Antimicrobial Actions of Silver Nanoparticles. Frontiers in Microbiology , 7 . http://doi.org/10.3389/fmicb.2016.01831
Ealias, Anu Mary., & Saravanakumar, M.. (2017). A review on the classification, characterisation, synthesis of nanoparticles and their application. IOP Conference Series: Materials Science and Engineering , 263 . http://doi.org/10.1088/1757-899X/263/3/032019
Ferdous, Z.., & Nemmar, A.. (2020). Health Impact of Silver Nanoparticles: A Review of the Biodistribution and Toxicity Following Various Routes of Exposure. International Journal of Molecular Sciences , 21 . http://doi.org/10.3390/ijms21072375
Garibo, D.., Borbón-Nuñez, H.., León, J. D. de., Mendoza, E. García., Estrada, I.., Toledaño-Magaña, Y.., Tiznado, H.., Ovalle-Marroquin, Marcela., Soto-Ramos, A. G.., Blanco, Alberto., Rodríguez, J.., Romo, O.., Chávez-Almazán, L.., & Susarrey‐Arce, A.. (2020). Green synthesis of silver nanoparticles using Lysiloma acapulcensis exhibit high-antimicrobial activity. Scientific Reports , 10 . http://doi.org/10.1038/s41598-020-69606-7
Gherasim, Oana., Puiu, R.., Bîrcă, A.., Burdușel, Alexandra-Cristina., & Grumezescu, A.. (2020). An Updated Review on Silver Nanoparticles in Biomedicine. Nanomaterials , 10 . http://doi.org/10.3390/nano10112318
Gomathi, A.., Rajarathinam, S.., Sadiq, A.., & Rajeshkumar, S.. (2020). Anticancer activity of silver nanoparticles synthesized using aqueous fruit shell extract of Tamarindus indica on MCF-7 human breast cancer cell line. Journal of Drug Delivery Science and Technology . http://doi.org/10.1016/j.jddst.2019.101376
Gomes, Helena I O., Martins, Catarina S M., & Prior, J.. (2021). Silver Nanoparticles as Carriers of Anticancer Drugs for Efficient Target Treatment of Cancer Cells. Nanomaterials , 11 . http://doi.org/10.3390/nano11040964
Gudikandula, Krishna., & Maringanti, Singara Charya. (2016). Synthesis of silver nanoparticles by chemical and biological methods and their antimicrobial properties. Journal of Experimental Nanoscience , 11 , 714 - 721 . http://doi.org/10.1080/17458080.2016.1139196
Hussain, I.., Singh, N.., Singh, Ajey., Singh, Himani., & Singh, S.. (2015). Green synthesis of nanoparticles and its potential application. Biotechnology Letters , 38 , 545 - 560 . http://doi.org/10.1007/s10529-015-2026-7
Hwang, In-sok., Hwang, J.., Choi, Hyemin., Kim, Keuk-Jun., & Lee, D. G.. (2012). Synergistic effects between silver nanoparticles and antibiotics and the mechanisms involved.. Journal of medical microbiology , 61 Pt 12 , 1719-26 . http://doi.org/10.1099/jmm.0.047100-0
Jeyaraj, M.., Sathishkumar, Gnanasekar., Sivanandhan, G.., MubarakAli, D.., Rajesh, M.., Arun, R.., Kapildev, G.., Manickavasagam, M.., Thajuddin, N.., Premkumar, K.., & Ganapathi, A.. (2013). Biogenic silver nanoparticles for cancer treatment: an experimental report.. Colloids and surfaces. B, Biointerfaces , 106 , 86-92 . http://doi.org/10.1016/j.colsurfb.2013.01.027
Khorrami, Sadegh., Zarrabi, A.., Khaleghi, M.., Danaei, M.., & Mozafari, M.. (2018). Selective cytotoxicity of green synthesized silver nanoparticles against the MCF-7 tumor cell line and their enhanced antioxidant and antimicrobial properties. International Journal of Nanomedicine , 13 , 8013 - 8024 . http://doi.org/10.2147/IJN.S189295
Lee, Sang Hun., & Jun, Bong-Hyun. (2019). Silver Nanoparticles: Synthesis and Application for Nanomedicine. International Journal of Molecular Sciences , 20 . http://doi.org/10.3390/ijms20040865
Liao, C.., Li, Yuchao., & Tjong, S.. (2019). Bactericidal and Cytotoxic Properties of Silver Nanoparticles. International Journal of Molecular Sciences , 20 . http://doi.org/10.3390/ijms20020449
Locatelli, E.., Naddaka, Maria., Uboldi, C.., Loudos, G.., Fragogeorgi, E.., Molinari, V.., Pucci, A.., Tsotakos, T.., Psimadas, D.., Ponti, J.., & Franchini, M.. (2014). Targeted delivery of silver nanoparticles and alisertib: in vitro and in vivo synergistic effect against glioblastoma.. Nanomedicine , 9 6 , 839-49 . http://doi.org/10.2217/nnm.14.1
Lohcharoenkal, W.., Wang, Liying., Chen, Y.., & Rojanasakul, Y.. (2014). Protein Nanoparticles as Drug Delivery Carriers for Cancer Therapy. BioMed Research International , 2014 . http://doi.org/10.1155/2014/180549
Mathur, P.., Jha, Swati., Ramteke, S.., & Jain, N.. (2018). Pharmaceutical aspects of silver nanoparticles. Artificial Cells, Nanomedicine, and Biotechnology , 46 , 115 - 126 . http://doi.org/10.1080/21691401.2017.1414825
Matteis, V. De., Cascione, M.., Toma, C. C.., & Leporatti, S.. (2018). Silver Nanoparticles: Synthetic Routes, In Vitro Toxicity and Theranostic Applications for Cancer Disease. Nanomaterials , 8 . http://doi.org/10.3390/nano8050319
Mitchell, M. J.., Billingsley, Margaret M.., Haley, Rebecca M.., Wechsler, M.., Peppas, N.., & Langer, R.. (2020). Engineering precision nanoparticles for drug delivery. Nature Reviews. Drug Discovery , 20 , 101 - 124 . http://doi.org/10.1038/s41573-020-0090-8
Mohammed, Munawar., Syeda, Jaweria., Wasan, K.., & Wasan, E.. (2017). An Overview of Chitosan Nanoparticles and Its Application in Non-Parenteral Drug Delivery. Pharmaceutics , 9 . http://doi.org/10.3390/pharmaceutics9040053
Narayan, R.., Nayak, U.., Raichur, A.., & Garg, S.. (2018). Mesoporous Silica Nanoparticles: A Comprehensive Review on Synthesis and Recent Advances. Pharmaceutics , 10 . http://doi.org/10.3390/pharmaceutics10030118
Oh, Nuri., & Park, Ji-Ho. (2014). Endocytosis and exocytosis of nanoparticles in mammalian cells. International Journal of Nanomedicine , 9 , 51 - 63 . http://doi.org/10.2147/IJN.S26592
Prabhu, S.., & Poulose, Eldho K. (2012). Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. International Nano Letters , 2 , 1-10 . http://doi.org/10.1186/2228-5326-2-32
Roy, A.., Bulut, O.., Some, Sudip., Mandal, Amit Kumar., & Yilmaz, M.. (2019). Green synthesis of silver nanoparticles: biomolecule-nanoparticle organizations targeting antimicrobial activity. RSC Advances , 9 , 2673 - 2702 . http://doi.org/10.1039/c8ra08982e
Siddiqi, K. S.., Husen, A.., & Rao, R.. (2018). A review on biosynthesis of silver nanoparticles and their biocidal properties. Journal of Nanobiotechnology , 16 . http://doi.org/10.1186/s12951-018-0334-5
Stark, W.., Stoessel, P.., Wohlleben, W.., & Hafner, A.. (2015). Industrial applications of nanoparticles.. Chemical Society reviews , 44 16 , 5793-805 . http://doi.org/10.1039/c4cs00362d
Toy, R.., Peiris, P.., Ghaghada, K.., & Karathanasis, E.. (2014). Shaping cancer nanomedicine: the effect of particle shape on the in vivo journey of nanoparticles.. Nanomedicine , 9 1 , 121-34 . http://doi.org/10.2217/nnm.13.191
Xu, Li., Wang, Yiyi., Huang, Jie., Chen, Chun-Yuan., Wang, Zhenxing., & Xie, Hui. (2020). Silver nanoparticles: Synthesis, medical applications and biosafety. Theranostics , 10 , 8996 - 9031 . http://doi.org/10.7150/thno.45413
Yuan, Yu-Guo., Peng, Qiu-Ling., & Gurunathan, Sangiliyandi. (2017). Effects of Silver Nanoparticles on Multiple Drug-Resistant Strains of Staphylococcus aureus and Pseudomonas aeruginosa from Mastitis-Infected Goats: An Alternative Approach for Antimicrobial Therapy. International Journal of Molecular Sciences , 18 . http://doi.org/10.3390/ijms18030569
Yuan, Yu-Guo., Zhang, Shimin., Hwang, Ji-Yoon., & Kong, I.. (2018). Silver Nanoparticles Potentiates Cytotoxicity and Apoptotic Potential of Camptothecin in Human Cervical Cancer Cells. Oxidative Medicine and Cellular Longevity , 2018 . http://doi.org/10.1155/2018/6121328