Genetic Characteristics of Toxigenic Clostridium Species: A Review
Keywords:
Clostridium, Toxin Genes, Horizontal Gene Transfer, PaLocAbstract
Toxins are the most invasive virulence factors of Clostridium and are accountable for dangerous disorders in mammalians. Species of Clostridia include a broad group of anaerobic bacteria capable of producing some of the most potent toxins. Toxin-producing Clostridium displays high genomic plasticity due to the activity of diverse mobile genetic elements, frequent horizontal gene transfer, variable genomic contexts of toxin loci, and dynamic plasmid‐chromosome interactions. This plasticity results in the emergence, diversification, and adaptation of virulent strains. Understanding the genetic characteristics of toxigenic Clostridium species is crucial for development of effective strategies to combat infections caused by these pathogens. The diversity of Clostridium perfringens toxinotypes is largely attributed to the distribution of plasmids that harbor one or multiple toxin-encoding genes. In contrast, Clostridium difficile exhibits substantial genetic variability, yet its toxin genes are organized within a chromosomal pathogenicity locus (PaLoc) rather than on plasmids. The detection of homologous toxin genes among different Clostridium species—such as C. sordellii, C. novyi, and C. perfringens—indicates the horizontal transfer and interspecies mobilization of this pathogenicity region. Furthermore, the existence of multiple C. difficile toxinotypes, arising from toxin gene polymorphisms, likely represents adaptive evolution to the intestinal niche. Similarly, botulinum toxin (BoNT) genes exhibit extensive sequence and positional variability, being located on chromosomes, plasmids, or bacteriophages, and are distributed across a range of Clostridium species, including C. botulinum groups I–IV, C. argentinense, C. butyricum, and C. baratii. This wide genomic distribution underscores the dynamic genetic exchange and evolutionary plasticity that characterize toxigenic clostridia.
References
Aktories, K., & Papatheodorou, P. (2020). Clostridial toxins: Cellular and molecular action mechanisms. Nature Reviews Microbiology, 18(6), 369–385. https://doi.org/10.1038/s41579-020-0362-2
Brüggemann, H., & Pfohl-Leszkowicz, A. (2019). Genetic mobility and evolution of Clostridium toxins. Toxins, 11(10), 581. https://doi.org/10.3390/toxins11100581
Chandra, H., Sorg, J. A., Hassett, D. J., & Sun, X. (2023). Regulatory transcription factors of Clostridioides difficile pathogenesis with a focus on toxin regulation. Critical Reviews in Microbiology, 49(3), 334–349. https://doi.org/10.1080/1040841X.2022.2054307
Curry, S. R., Marsh, J. W., & Muto, C. A. (2019). Diversity of toxins and virulence genes in Clostridioides difficile. Frontiers in Microbiology, 10, 1951. https://doi.org/10.3389/fmicb.2019.01951
Dupuy, B. (2023). Regulation of Clostridial toxin gene expression: A Pasteurian tradition. Toxins, 15(7), 413. https://doi.org/10.3390/toxins15070413
Gulliver, E. L., Adams, V., Marcelino, V. R., Gould, J., Rutten, E. L., Powell, D. R., Young, R. B., D'Adamo, G. L., Hemphill, J., Solari, S. M., Revitt-Mills, S. A., Munn, S., Jirapanjawat, T., Greening, C., Boer, J. C., Flanagan, K. L., Kaldhusdal, M., Plebanski, M., Gibney, K. B., Moore, R. J., … Forster, S. C. (2023). Extensive genome analysis identifies novel plasmid families in Clostridium perfringens. Microbial Genomics, 9(4), mgen000995. https://doi.org/10.1099/mgen.0.000995
Inzalaco, H. N., Tepp, W. H., Fredrick, C., Bradshaw, M., Johnson, E. A., & Pellett, S. (2021). Posttranslational regulation of botulinum neurotoxin production in Clostridium botulinum Hall A-hyper. mSphere, 6(4), e0032821. https://doi.org/10.1128/mSphere.00328-21
Kiu, R., & Hall, L. J. (2018). An update on the human and animal enteric pathogen Clostridium perfringens. Emerging Microbes & Infections, 7(1), 141. https://doi.org/10.1038/s41426-018-0144-8
Majumdar, A., & Govind, R. (2022). Regulation of Clostridioides difficile toxin production. Current Opinion in Microbiology, 65, 95–100. https://doi.org/10.1016/j.mib.2021.10.018
Mehdizadeh Gohari, I., Navarro, M. A., Li, J., Shrestha, A., Uzal, F. A., & McClane, B. A. (2021). Pathogenicity and virulence of Clostridium perfringens. Virulence, 12(1), 723–753. https://doi.org/10.1080/21505594.2021.1886777
Monot, M., et al. (2015). Clostridium difficile: New insights into the evolution of pathogenicity. Scientific Reports, 5, 15023. https://doi.org/10.1038/srep15023
Moore, R. J., & Lacey, J. A. (2019). Genomics of the pathogenic Clostridia. Microbiology Spectrum, 7(3). https://doi.org/10.1128/microbiolspec.gpp3-0033-2018
Ohtani, K., & Shimizu, T. (2015). Regulation of toxin gene expression in Clostridium perfringens. Research in Microbiology, 166(4), 280–289. https://doi.org/10.1016/j.resmic.2014.09.010
Popoff, M. R. (2013). Genetic characteristics of toxigenic Clostridia and toxin genes. Toxicon, 61, 1–10. https://doi.org/10.1016/j.toxicon.2012.09.009
Popoff, M. R., & Brüggemann, H. (2017). New insights into the evolution of bacterial toxins. Current Opinion in Microbiology, 38, 36–44. https://doi.org/10.1016/j.mib.2017.04.004
Popoff, M. R., & Brüggemann, H. (2022). Regulatory networks controlling neurotoxin synthesis in Clostridium botulinum and Clostridium tetani. Toxins, 14(6), 364. https://doi.org/10.3390/toxins14060364
Rood, J. I., Adams, V., & Lacey, J. A. (2020). Expansion of the Clostridium perfringens plasmidome and its role in toxin diversity. Microbial Genomics, 6(9), e000491. https://doi.org/10.1099/mgen.0.000491
Sakurai, J., Nagahama, M., & Oda, M. (2020). Aerolysin family pore-forming toxins: Structure, function, and evolution. Toxins, 12(10), 678. https://doi.org/10.3390/toxins12100678
Smith, T. J., Tian, R., Imanian, B., Williamson, C. H. D., Johnson, S. L., Daligault, H. E., & Schill, K. M. (2021). Integration of complete plasmids containing bont genes into chromosomes of Clostridium parabotulinum, Clostridium sporogenes, and Clostridium argentinense. Toxins, 13(7), 473. https://doi.org/10.3390/toxins13070473
Smith, T. J., Williamson, C. H. D., & Johnson, S. L. (2021). Integration of plasmid-borne bont genes into clostridial chromosomes. Toxins, 13(7), 473. https://doi.org/10.3390/toxins13070473
Williamson, C. H. D., Sahl, J. W., & Smith, T. J. (2016). Comparative genomic analyses reveal broad diversity in botulinum-toxin-producing Clostridia. BMC Genomics, 17(1), 180. https://doi.org/10.1186/s12864-016-2502
Zhang, Z., Dahlsten, E., Korkeala, H., & Lindstrِm, M. (2015). Positive regulation of botulinum neurotoxin gene expression by CodY in Clostridium botulinum ATCC 3502. Applied and Environmental Microbiology, 80(24), 7651–7658. https://doi.org/10.1128/AEM.02838-14
