Genetic Basis of Virulence Factors in Vibrio Cholerae: A Review

Authors

  • Russell Issam AL-Daher Department of Biology, College of Science for women, University of Babylon, Iraq

Keywords:

Genetic Basis, Virulence Factors, Vibrio cholerae, ToxT

Abstract

Cholera is a major epidemic disease worldwide, contributing significantly to global morbidity and mortality. The hallmark of the disease, severe watery diarrhea, results from a complex process in which multiple bacterial components enable Vibrio cholerae to reach the small intestinal epithelium, establish colonies, and produce toxins. The AraC/XylS-family transcriptional regulator, ToxT, acts as the primary activator of virulence genes in V. cholerae, the Gram-negative bacterium responsible for cholera. Unsaturated fatty acids (UFAs) present in bile can inhibit ToxT activity, thereby modulating virulence expression. Recent studies indicate that virulence in V. cholerae is not solely determined by the presence of key genes such as ctxAB and tcp. Accessory virulence-associated genes, mobile genetic elements (MGEs), regulatory networks, secretion systems, and small RNAs (sRNAs) collectively contribute to the pathogen’s ability to infect, persist, and spread. The adhesion of Vibrio cholerae to the intestinal epithelium, as well as its capacity to obtain nutrients and manipulate host immune mechanisms, is facilitated by several molecular determinants. Among these are mucin-interacting proteins such as GbpA, hemagglutinin/protease (HapA), and neuraminidase (NanH), together with various regulatory networks. The bacterium’s collective behavior and virulence expression are predominantly governed by the quorum-sensing (QS) system, which functions as a density-dependent communication network. When bacterial populations are at a low cell density (LCD), the regulatory molecules—including LuxO, HapR, and the signaling autoinducers AI-2 and CAI-1—coordinate gene expression patterns that enhance colonization capacity, stimulate biofilm development, and concurrently inhibit HapR-mediated repression. This review study highlights the genetic and molecular foundations underlying the virulence determinants that shape the pathogenic potential of V. cholerae.

References

Abana, D., Gyamfi, E., Dogbe, M., et al. (2019). Investigating the virulence genes and antibiotic susceptibility patterns of Vibrio cholerae O1 in environmental and clinical isolates in Accra, Ghana. BMC Infectious Diseases, 19, 76. https://doi.org/10.1186/s12879-019-3714-z

Bhandari, M., Jennison, A. V., Rathnayake, I. U., & Huygens, F. (2021). Evolution, distribution and genetics of atypical Vibrio cholerae—A review. Infection, Genetics and Evolution, 89, 104726. https://doi.org/10.1016/j.meegid.2021.104726

Canals, A., Pieretti, S., Muriel-Masanes, M., et al. (2023). ToxR activates the Vibrio cholerae virulence genes by tethering DNA to the membrane through versatile binding to multiple sites. Proceedings of the National Academy of Sciences U.S.A., 120(29), e2304378120. https://doi.org/10.1073/pnas.2304378120

Chaguza, C., Ouso, D. O., Kabwama, S. N., Malama, K., Ng'oma, M., Musonda, K. G., Misinzo, G., & Thomson, N. R. (2024). Genomic insights into the 2022–2023 Vibrio cholerae outbreak in Malawi. Nature Communications, 15(1), 45860. https://doi.org/10.1038/s41467-024-45860-6

Chin, C. S., Gutiérrez, R. A., Sorenson, J., DeLong, K., Tullman-Ercek, D., Korlach, J., & Waldor, M. K. (2020). Complete genome-wide reconstruction of mobile genetic elements reveals their contribution to Vibrio cholerae evolution and virulence. Proceedings of the National Academy of Sciences, 117(45), 28152–28162. https://doi.org/10.1073/pnas.2019637117

Crisan, C. V., Chande, A. T., Williams, K., et al. (2019). Analysis of Vibrio cholerae genomes identifies new type VI secretion system gene clusters. Genome Biology, 20, 163. https://doi.org/10.1186/s13059-019-1765-5

De, R. (2021). Mobile genetic elements of Vibrio cholerae and the evolution of epidemic traits. Frontiers in Tropical Diseases, 1, 691604. https://doi.org/10.3389/fitd.2021.691604

Dominguez, S. R., & Blokesch, M. (2024). The intersection between host–pathogen interactions and environmental signals in Vibrio cholerae pathogenesis. Trends in Microbiology, 32(5), 380–392. https://doi.org/10.1016/j.tim.2024.02.004

Sakib, S. N., Reddi, G., & Almagro-Moreno, S. (2018). Environmental role of pathogenic traits in Vibrio cholerae. Journal of Bacteriology, 200(15), e00795-17. https://doi.org/10.1128/JB.00795-17

Prentice, J. A., Bridges, A. A., & Bassler, B. L. (2022). Synergy between c-di-GMP and quorum-sensing signaling in Vibrio cholerae biofilm morphogenesis. Journal of Bacteriology, 204(10), e00249-22. https://doi.org/10.1128/jb.00249-22

Ghandour, R., & Papenfort, K. (2023). Small regulatory RNAs in Vibrio cholerae. microLife, 4. https://doi.org/10.1093/femsml/uqad030/7199165

Gubensäk, N., Sagmeister, T., Buhlheller, C., Geronimo, B. D., Wagner, G. E., Petrowitsch, L., Gräwert, M. A., Rotzinger, M., Berger, T. M. I., Schäfer, J., Usón, I., Reidl, J., Sánchez-Murcia, P. A., Zangger, K., Pavkov-Keller, T. (2023). Vibrio cholerae’s ToxRS bile sensing system. eLife, 12, e88721. https://doi.org/10.7554/eLife.88721

Huber, M., Papenfort, K., & Bassler, B. L. (2022). An RNA sponge controls quorum sensing dynamics and biofilm formation in Vibrio cholerae. Nature Communications, 13(1), 3526. https://doi.org/10.1038/s41467-022-35261-x

Jubyda, F. T., Nahar, K. S., Barman, I., et al. (2023). Vibrio cholerae O1 associated with recent endemic cholera shows temporal changes in serotype, genotype, and drug-resistance patterns in Bangladesh. Gut Pathogens, 15, 17. https://doi.org/10.1186/s13099-023-00537-0

Kumar, A. (2020). Vibrio pathogenicity island-1: the master determinant of cholera pathogenesis. Frontiers in Microbiology, 11, 578. https://doi.org/10.3389/fmicb.2020.00757

Lee, D., Choi, H., Son, S., Bae, J., Joo, J., Kim, D. W., & Kim, E. J. (2023). Expression of Cholera Toxin (CT) and the Toxin Co-Regulated Pilus (TCP) by Variants of ToxT in Vibrio cholerae Strains. Toxins, 15(8), 507. https://doi.org/10.3390/toxins15080507

Lembke, M., Pennetzdorfer, N., Tutz, S., Koller, M., Vorkapic, D., Zhu, J., & Blokesch, M. (2018). Proteolysis of ToxR is controlled by cysteine-thiol redox state and bile salts in Vibrio cholerae. Molecular Microbiology, 110(5), 796–810. https://doi.org/10.1111/mmi.14125

Li, X. (2024). Diversity and complexity of CTXΦ and pre-CTXΦ families. Frontiers in Microbiology. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11509585/

Maciel-Guerra, A., et al. (2024). Core and accessory genomic traits of Vibrio cholerae O1 linked to transmission and disease severity. Nature Communications, 15, 52238-0.

Mageto, L. M., Aboge, G. O., Mekuria, Z. H., Gathura, P., Juma, J., Mugo, M., Kebenei, C. K., Imoli, D., Ongadi, B. A., Kering, K., Mbae, C. K., & Kariuki, S. (2025). Genomic characterization of Vibrio cholerae isolated from clinical and environmental sources during the 2022-2023 cholera outbreak in Kenya. Frontiers in microbiology, 16, 1603736. https://doi.org/10.3389/fmicb.2025.1603736.

McDonald, N. D., Regmi, A., Morreale, D. P., et al. (2019). CRISPR-Cas systems are present predominantly on mobile genetic elements in Vibrio species. BMC Genomics, 20, 105. https://doi.org/10.1186/s12864-019-5439-1

Pant, A., Bag, S., Saha, B., Verma, J., Kumar, P., Banerjee, S., … Das, B. (2020). Molecular insights into the genome dynamics and interactions between core and acquired genomes of Vibrio cholerae. Proceedings of the National Academy of Sciences of the United States of America, 117(38), 23762–23773. https://doi.org/10.1073/pnas.2006283117

Montero, D. A., & Rodríguez, L. A. (2023). Vibrio cholerae: Classification, pathogenesis, immune response, and clinical management. Frontiers in Medicine, 10, 1155751. https://doi.org/10.3389/fmed.2023.1155751

Ochi, K., Mizuno, T., Samanta, P., Mukhopadhyay, A. K., Miyoshi, S. I., & Imamura, D. (2021). Recent Vibrio cholerae O1 Epidemic Strains Are Unable To Replicate CTXΦ Prophage Genome. mSphere, 6(3), e0033721. https://doi.org/10.1128/mSphere.00337-21

Ramamurthy, T., Nandy, R. K., Mukhopadhyay, A. K., Dutta, S., Mutreja, A., Okamoto, K., Miyoshi, S. I., Nair, G. B., & Ghosh, A. (2020). Virulence Regulation and Innate Host Response in the Pathogenicity of Vibrio cholerae. Frontiers in cellular and infection microbiology, 10, 572096. https://doi.org/10.3389/fcimb.2020.572096

Rasmussen, T., Jensen, R. B., & Skovgaard, O. (2007). The two chromosomes of Vibrio cholerae are initiated at different time points in the cell cycle. The EMBO Journal, 26(13), 3124–3131. https://doi.org/10.1038/sj.emboj.7601747

Racault, M.-F., Abdulaziz, A., George, G., Menon, N., C, J., Punathil, M., McConville, K., Loveday, B., Platt, T., Sathyendranath, S., & Vijayan, V. (2019). Environmental Reservoirs of Vibrio cholerae: Challenges and Opportunities for Ocean-Color Remote Sensing. Remote Sensing, 11(23), 2763. https://doi.org/10.3390/rs11232763

Saha, D., Aggarwal, S., & Singh, A. (2023). Attenuation of quorum sensing system and virulence in Vibrio cholerae by phytomolecules. Frontiers in Microbiology, 14, 1205387. https://doi.org/10.3389/fmicb.2023.1205387

Sajeevana, A., Ramamurthy, T., & Solomon, A. P. (2024). Vibrio cholerae virulence and its suppression through the quorum-sensing system. Critical Reviews in Microbiology. Advance online publication. https://doi.org/10.1080/1040841X.2024.2320823

Takahashi, E., Ochi, S., Mizuno, T., Morita, D., Morita, M., Ohnishi, M., Koley, H., Dutta, M., Chowdhury, G., Mukhopadhyay, A. K., Dutta, S., Miyoshi, S. I., & Okamoto, K. (2021). Virulence of Cholera Toxin Gene-Positive Vibrio cholerae Non-O1/non-O139 Strains Isolated From Environmental Water in Kolkata, India. Frontiers in microbiology, 12, 726273. https://doi.org/10.3389/fmicb.2021.726273

van Kessel, J. C. (2024). Vibrio cholerae: A fundamental model system for bacterial genetics. Journal of Bacteriology, 206(11), e00248-24. https://doi.org/10.1128/jb.00248-24

Vezzulli, L., Baker-Austin, C., Kirschner, A., Pruzzo, C., & Martinez-Urtaza, J. (2020). Global emergence of Vibrio cholerae and other pathogenic vibrios in natural aquatic environments. Nature Reviews Microbiology, 18(11), 697–713. https://doi.org/10.1038/s41579-020-0402-3

Walton, M. G., Cubillejo, I., Nag, D., & Withey, J. H. (2023). Advances in cholera research: from molecular biology to public health initiatives. Frontiers in microbiology, 14, 1178538. https://doi.org/10.3389/fmicb.2023.1178538.

Zhang, Q., Alter, T., & Fleischmann, S. (2024). Non-O1/Non-O139 Vibrio cholerae — an underestimated foodborne pathogen? An overview of its virulence genes and regulatory systems involved in pathogenesis. Microorganisms, 12(4), 818. https://doi.org/10.3390/microorganisms12040818

Downloads

Published

2025-10-16