The Role of Hexapods in Ecosystem Stability and Transmitted Diseases: A Review Article
Keywords:
hexapods, ecosystem stability, transmitted diseasesAbstract
Hexapods are a diverse group of insects and their related arthropods that play a vital role in shaping and maintaining terrestrial ecosystems. Their ecological functions include pollination, decomposition, soil aeration, and natural pest control, all of which contribute significantly to ecosystem stability. Some species among hexapods are the most efficient vectors of different pathogenic diseases, such as malaria, dengue fever, Lyme disease, and Chagas. Thus, these organisms place themselves in a rather complicated interface of biodiversity conservation and disease epidemiology. Changes in the environment due to climate change, habitat destruction or urbanization would influence the ecological roles played by hexapods in the transmission of vector-borne diseases. This double use highlights their essential ecological roles while also exploring them as agents of disease transmission. Recent studies on both negative and positive impacts will therefore be reviewed here to allow an understanding of how hexapods impact ecosystem functioning and human health. This duality is also very important for integrated strategies that provide support towards achieving ecological sustainability while reducing health risks amid global ecological changes. It seeks to give an even and broad view of the ecological helps by hexapods and the public health dangers linked with insect-borne sicknesses. Such a grasp is key for biodiversity care, sustainable growth, and health readiness in a fast-changing world.
References
Aksoy, S., Weiss, B., & Attardo, G. (2001). Paratransgenesis applied for control of tsetse transmitted sleeping sickness. Advances in Experimental Medicine and Biology, 531, 161–172. https://doi.org/10.1007/978-1-4615-1277-4_17
Alvar, J., Vélez, I. D., Bern, C., Herrero, M., Desjeux, P., Cano, J., ... & WHO Leishmaniasis Control Team. (2012). Leishmaniasis worldwide and global estimates of its incidence. PLoS ONE, 7(5), e35671. https://doi.org/10.1371/journal.pone.0035671
Bardgett, R. D., & van der Putten, W. H. (2014). Belowground biodiversity and ecosystem functioning. Nature, 515(7528), 505–511. https://doi.org/10.1038/nature13855
Benedict, M. Q., Levine, R. S., Hawley, W. A., & Lounibos, L. P. (2007). Spread of the tiger: Global risk of invasion by the mosquito Aedes albopictus. Vector-Borne and Zoonotic Diseases, 7(1), 76–85. https://doi.org/10.1089/vbz.2006.0562
Centers for Disease Control and Prevention (CDC). (2023). Neglected tropical diseases. https://www.cdc.gov/globalhealth/ntd/index.html
Destoumieux-Garzón, D., Mavingui, P., Boetsch, G., Boissier, J., Darriet, F., Duboz, P., ... & Voituron, Y. (2018). The One Health concept: 10 years old and a long road ahead. Frontiers in Veterinary Science, 5, 14. https://doi.org/10.3389/fvets.2018.00014
Díaz, S., Settele, J., Brondízio, E. S., Ngo, H. T., Agard, J., Arneth, A., ... & Zayas, C. N. (2019). Pervasive human-driven decline of life on Earth points to the need for transformative change. Science, 366(6471), eaax3100. https://doi.org/10.1126/science.aax3100
Folgarait, P. J. (1998). Ant biodiversity and its relationship to ecosystem functioning: A review. Biodiversity & Conservation, 7(9), 1221–1244. https://doi.org/10.1023/A:1008891901953
Fonseca, D. M., Keyghobadi, N., Malcolm, C. A., Mehmet, C., Schaffner, F., Mogi, M., ... & Wilkerson, R. C. (2010). Emerging vectors in the Culex pipiens complex. Science, 330(6005), 607–607. https://doi.org/10.1126/science.1194855
Goulson, D., Nicholls, E., Botías, C., & Rotheray, E. L. (2015). Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science, 347(6229), 1255957. https://doi.org/10.1126/science.1255957
Graczyk, T. K., Knight, R., & Tamang, L. (2001). Mechanical transmission of human protozoan parasites by insects. Clinical Microbiology Reviews, 14(3), 476–486. https://doi.org/10.1128/CMR.14.3.476-486.2001
Gubler, D. J. (2011). Dengue, urbanization and globalization: The unholy trinity of the 21st century. Tropical Medicine and Health, 39(4 Suppl), 3–11. https://doi.org/10.2149/tmh.2011-S05
Hallmann, C. A., Sorg, M., Jongejans, E., Siepel, H., Hofland, N., Schwan, H., ... & de Kroon, H. (2017). More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE, 12(10), e0185809. https://doi.org/10.1371/journal.pone.0185809
Hooper, D. U., Chapin, F. S., Ewel, J. J., Hector, A., Inchausti, P., Lavorel, S., ... & Schmid, B. (2005). Effects of biodiversity on ecosystem functioning: A consensus of current knowledge. Ecological Monographs, 75(1), 3–35. https://doi.org/10.1890/04-0922
Hopkin, S. P. (1997). Biology of the springtails (Insecta: Collembola). Oxford University Press.
Jouquet, P., Traoré, S., Choosai, C., Hartmann, C., & Bignell, D. (2011). Influence of termites on ecosystem functioning. Ecosystem Services, 1(1), 10–20. https://doi.org/10.1016/j.ecoser.2011.12.005
Klein, A. M., Vaissière, B. E., Cane, J. H., Steffan-Dewenter, I., Cunningham, S. A., Kremen, C., & Tscharntke, T. (2007). Importance of pollinators in changing landscapes for world crops. Proceedings of the Royal Society B: Biological Sciences, 274(1608), 303–313. https://doi.org/10.1098/rspb.2006.3721
Landis, D. A., Wratten, S. D., & Gurr, G. M. (2000). Habitat management to conserve natural enemies of arthropod pests in agriculture. Annual Review of Entomology, 45, 175–201. https://doi.org/10.1146/annurev.ento.45.1.175
Lehane, M. J. (2005). The biology of blood-sucking in insects (2nd ed.). Cambridge University Press.
Loreau, M., Naeem, S., Inchausti, P., Bengtsson, J., Grime, J. P., Hector, A., ... & Wardle, D. A. (2001). Biodiversity and ecosystem functioning: Current knowledge and future challenges. Science, 294(5543), 804–808. https://doi.org/10.1126/science.1064088
McGeoch, M. A. (1998). The selection, testing and application of terrestrial insects as bioindicators. Biological Reviews, 73(2), 181–201. https://doi.org/10.1017/S000632319700515X
Mlakar, J., Korva, M., Tul, N., Popović, M., Poljšak-Prijatelj, M., Mraz, J., ... & Županc, T. A. (2016). Zika virus associated with microcephaly. New England Journal of Medicine, 374(10), 951–958. https://doi.org/10.1056/NEJMoa1600651
Myers, S. S., & Patz, J. A. (2009). Emerging threats to human health from global environmental change. Annual Review of Environment and Resources, 34, 223–252. https://doi.org/10.1146/annurev.environ.033108.102650
Paz, S. (2015). Climate change impacts on vector-borne diseases in Europe: Risks, predictions and actions. Global Health Action, 8(1), 27286. https://doi.org/10.3402/gha.v8.27286
Perry, R. D., & Fetherston, J. D. (1997). Yersinia pestis—etiologic agent of plague. Clinical Microbiology Reviews, 10(1), 35–66. https://doi.org/10.1128/cmr.10.1.35
Potts, S. G., Biesmeijer, J. C., Kremen, C., Neumann, P., Schweiger, O., & Kunin, W. E. (2010). Global pollinator declines: trends, impacts and drivers. Trends in Ecology & Evolution, 25(6), 345–353. https://doi.org/10.1016/j.tree.2010.01.007
Ranson, H., & Lissenden, N. (2016). Insecticide resistance in Anopheles gambiae: data, mechanisms, and progress in disease control. Trends in Parasitology, 32(3), 187–196. https://doi.org/10.1016/j.pt.2015.11.012
Raoult, D., & Roux, V. (1999). The body louse as a vector of reemerging human diseases. Clinical Infectious Diseases, 29(4), 888–911. https://doi.org/10.1086/520454
Rocklöv, J., & Dubrow, R. (2020). Climate change: an enduring challenge for vector-borne disease prevention and control. Nature Immunology, 21(5), 479–483. https://doi.org/10.1038/s41590-020-0648-y
Rusek, J. (1998). Biodiversity of Collembola and their functional role in the ecosystem. Biodiversity & Conservation, 7(9), 1207–1219. https://doi.org/10.1023/A:1008887817883
Simarro, P. P., Franco, J. R., Diarra, A., Ruiz-Postigo, J. A., & Jannin, J. G. (2012). Human African trypanosomiasis in non-endemic countries (2000–2010). Journal of Travel Medicine, 19(1), 44–53. https://doi.org/10.1111/j.1708-8305.2011.00576.x
Siraj, A. S., Santos-Vega, M., Bouma, M. J., Yadeta, D., Ruiz Carrascal, D., & Pascual, M. (2014). Altitudinal changes in malaria incidence in highlands of Ethiopia and Colombia. Science, 343(6175), 1154–1158. https://doi.org/10.1126/science.1244325
Tscharntke, T., Klein, A. M., Kruess, A., Steffan-Dewenter, I., & Thies, C. (2005). Landscape perspectives on agricultural intensification and biodiversity–ecosystem service management. Ecology Letters, 8(8), 857–874. https://doi.org/10.1111/j.1461-0248.2005.00782.x
Van den Berg, H., Zaim, M., Yadav, R. S., Soares, A., Ameneshewa, B., Mnzava, A., ... & Ejov, M. (2012). Global trends in the use of insecticides to control vector-borne diseases. Environmental Health Perspectives, 120(4), 577–582. https://doi.org/10.1289/ehp.1104340
Vasilakis, N., Cardosa, J., Hanley, K. A., Holmes, E. C., & Weaver, S. C. (2011). Fever from the forest: Prospects for the continued emergence of sylvatic dengue virus and its impact on public health. Nature Reviews Microbiology, 9(7), 532–541. https://doi.org/10.1038/nrmicro2595
Weaver, S. C., & Reisen, W. K. (2010). Present and future arboviral threats. Antiviral Research, 85(2), 328–345. https://doi.org/10.1016/j.antiviral.2009.10.008
Wilson, E. O. (1987). The little things that run the world (the importance and conservation of invertebrates). Conservation Biology, 1(4), 344–346. https://doi.org/10.1111/j.1523-1739.1987.tb00055.x
World Health Organization (WHO). (2020). Onchocerciasis (river blindness). https://www.who.int/news-room/fact-sheets/detail/onchocerciasis
World Health Organization (WHO). (2022). World malaria report 2022. https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2022
World Health Organization (WHO). (2023). Vector-borne diseases. https://www.who.int/news-room/fact-sheets/detail/vector-borne-diseases
World Health Organization (WHO). (2023). Vector-borne diseases. https://www.who.int/news-room/fact-sheets/detail/vector-borne-diseases
Zhang, Z. Q. (2011). Animal biodiversity: An outline of higher-level classification and survey of taxonomic richness. Zootaxa, 3148(1), 7–14. https://doi.org/10.11646/zootaxa.3148.1.3
