DIABETIC FOOT ULCERS AND RECENT TREATMENT BY NANOMATERIALS: A MINI REVIEW

Main Article Content

LUBNA ABDULAZEEM

Abstract

Diabetic foot ulcers (DFU) are one of the biggest obstacles to managing diabetes. DFUs are more difficult to treat, especially in patients with weakened immune systems. With the drugs on the market today, pathogenic bacteria and fungus might not be able to combat microbial infections at the wound site. In addition to discussing the medications, topical antibacterial treatments, dressings, and debridement techniques used for DFU, this page provides a comprehensive discussion of DFU and similar problems.  The 16S ribosomal DNA sequence found in bacteria is one of the cutting-edge diagnostic methods that can help us understand the microbiota associated with DFU. By applying cutting-edge biological and molecular therapies that have been demonstrated to promote enhanced healing, decreased local inflammation, and infection prevention, this aim may be accomplished.

Article Details

Section
Articles

References

Adeleye T.M., Kareem S.O. and Kekere- Ekun A.A.(2020). Optimization studies on biosynthesis of iron nanoparticles usingRhizopus stolonifer. Mater. Sci. Eng. 805 012037.

World Health Organization. (2021). Diabetes. World Health Organization. Retrieved 2021, from https://www.who.int/news-room/fact-sheets/detail/diabetes.

Raghav. A., Khan. Z.A., Labala. R.K. et al., (2018).Financial burden of diabetic foot ulcers to world: A progressive topic to discuss always. Ther. Adv. Endocrinol. Metab. ;9:29–31.

Qin. S., Xiao, W., Zhou, C., Pu, Q., Deng, X., Lan, L., ... & Wu, M. (2022). Pseudomonas aeruginosa: pathogenesis, virulence factors, antibiotic resistance, interaction with host, technology advances and emerging therapeutics. Signal Transduction and Targeted Therapy, 7(1), 199.

Baranwal, A., Srivastava, A., Kumar, P., Bajpai, V. K., Maurya, P. K., & Chandra, P. (2018). Prospects of nanostructure materials and their composites as antimicrobial agents. Frontiers in microbiology, 9, 422.

Salomoni, R., Léo, P., Montemor, A. F., Rinaldi, B. G., & Rodrigues, M. F. A. (2017). Antibacterial effect of silver nanoparticles in Pseudomonas aeruginosa. Nanotechnology, science and applications, 115-121.

Mukhtar, Y. Galalain, A.M. and Yunusa, U.M. (2019). A Modern Overview on Diabetes Mellitus: A Chronic Endocrine Disorder. Eur. J. Biol. 4: 1–14.

Katsarou, A. Gudbjörnsdottir, S. Rawshani, A. et al., (2017). Type 1 diabetes mellitus. Nat. Rev. Dis. Prim., 3:201716.

Chatterjee, S. Khunti, K., and Davies, M.J. (2017). Type 2 diabetes. Lancet, 389: 2239–2251.

Coustan, D.R. (2013). Gestational Diabetes Mellitus. Clin. Chem. 59: 1310–1321. IDF, I.D.F. (2019). Diabetes Atlas, 9th ed.International Diabetes Federation: Brussels, Belgium,.

Spicher, K. et al. 2015. Differences in tissue distribution of iron from various clinically used intravenous iron complexes in fetal avian heart and liver. Regul. Toxicol. Pharmacol. 73: 65–72.

Mutonga, D. M., Mureithi, M. W., Ngugi, N. N., & Otieno, F. C. (2019). Bacterial isolation and antibiotic susceptibility from diabetic foot ulcers in Kenya using microbiological tests and comparison with RT-PCR in detection of S. aureus and MRSA. BMC research notes, 12(1), 1-6.

Shahi, S. K., & Kumar, A. (2016). Isolation and genetic analysis of multidrug resistant bacteria from diabetic foot ulcers. Frontiers in microbiology, 6, 1464.

Icks, A. Scheer, M. Morbach, S. Genz, J. et al., (2011). Time-Dependent Impact of Diabetes on Mortality in Patients After Major Lower Extremity Amputation: Survival in a population-based 5-year cohort in Germany. Diabetes Care, 34: 1350–1354.

Barshes, N.R. Sigireddi, M. Wrobel, J.S. Mahankali, A.; Robbins, J.M.; Kougias, P. Armstrong, D.G. (2013). The system of care for the diabetic foot: Objectives, outcomes, and opportunities. Diabet. Foot Ankle, 4, 21847.

Noor, S. Zubair, M. and Ahmad, J.( 2015). Diabetic foot ulcer—A review on pathophysiology, classification and microbial etiology. Diabetes Metab. Syndr. Clin. Res. Rev. 9: 192–199.

World Health Organization. (2010). WHO guideline: Integrated management of adolescents in all their diversity with obesity. World Health Organization. Retrieved 2022, from https://www.who.int/news-room/events/detail/2022/12/08/default-calendar/who guideline-integrated-management-of-adolescent-in-all-their-diversity-with-obesity.

Lavery, L. A., Armstrong, D. G., & Harkless, L. B. (1996). Classification of diabetic foot wounds. The Journal of Foot and Ankle Surgery, 35(6), 528-531.

Lavery, L.A.; Armstrong, D.G.; Wunderlich, R.Petal.,(2016). Risk factors for foot infections in individuals with diabetes. Diabetes Care 29: 1288–1293.

Abbade, L. P. F., & Lastória, S. (2005). Venous ulcer: epidemiology, physiopathology, diagnosis and treatment. International journal of dermatology, 44(6), 449-456.

Labropoulos, N., Patel, P. J., Tiongson, J. E., Pryor, L., Leon Jr, L. R., & Tassiopoulos, A. K. (2007). Patterns of venous reflux and obstruction in patients with skin damage due to chronic venous disease. Vascular and endovascular surgery, 41(1), 33-40.

Ryan DP, Hong TS, Bardeesy N (2014). "Pancreatic adenocarcinoma". The New England Journal of Medicine. 371 (11): 1039–49.

Bosco, D., et al., (2010). Unique arrangement of alpha- and beta-cells in human islets of Langerhans. Diabetes, 59(5): 1202-10.

Cohrs, C.M., et al., (2017).Vessel network architecture of adult human islets promotes distinct cell-cell interactions in situ and is altered after transplantation. Endocrinology,

Gepts, W., (1965).Pathologic anatomy of the pancreas in juvenile diabetes mellitus. Diabetes,. 14(10): p. 619-33.

American Diabetes Association (2022). Standards of Medical Care in Diabetes-2022 Abridged for Primary Care Providers. Clinical diabetes : a publication of the American Diabetes Association, 40(1), 10–38.

Knowler, W. C., Barrett-Connor, E., Fowler, S. E., Hamman, R. F., Lachin, J. M., Walker, E. A., ... & Spandorfer, J. M. (2002). Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin.

Hansen S.E.J. , Madsen C.M. , Varbo A. , Nordestgaard B.G.(2020 ). Body mass index, triglycerides, and risk of acute pancreatitis: a population-based study of 118,000 individuals J. Clin. Endocrinol. Metab., 105 :. 2020.

Bhatia M, Wong FL, Cao Y, Lau HY, Huang J, Puneet P, Chevali L. (2005).Pathophysiologyof acute pancreatitis. Pancreatology. 5:132–144.

Ahmed, A.U, Issa Y, Hagenaars JC, et al. (2016). Risk of recurrent pancreatitis and progression to chronic pancreatitis after a first episode of acute pancreatitis. Clin Gastroenterol Hepatol. 14:738–746.

Forman, M.A., Marks S.L., De Cock H.E., et al.,(2004). Evaluation of serum feline pancreatic lipase immunoreactivity and helical computed tomography versus conventional testing for the diagnosis of feline pancreatitis. J Vet Intern Med 18:807–815.

Klöppel, G. (2018). Histopathology of acute pancreatitis. The Pancreas: An Integrated Textbook of Basic Science, Medicine, and Surgery, 193-198.

Frossard,J.L., Steer ML, Pastor CM. (2008). Acute pancreatitis. Lancet. 2008; 371:143-152.

Malvezzi M, Bertuccio P, Levi F et al. (2014). European cancer mortality predictions for the year 2014. Ann Oncol; 25: 1650–1656.

Wisnoski NC, Townsend CM, Jr, Nealon WH et al. (2008). 672 patients with acinar cell carcinoma of the pancreas: a population-based comparison to pancreatic adenocarcinoma. Surgery; 144: 141–148.

Larsson SC, Wolk A. (2012). Red and processed meat consumption and risk of pancreatic cancer: meta-analysis of prospective studies. Br J Cancer; 106: 603–607.

Madácsy, T., Pallagi, P., Maleth J.(2018). Cystic fibrosis of the pancreas: The role of cftr channel in the regulation of intracellular Ca (2+) signaling and mitochondrial function in the exocrine pancreas. Front Physiol.; 9:1585.

Chong, B. and Gardner, T. (2021). Cystic Fibrosis-Related Pancreatic Disorders. JOP. J Pancreas (Online) 31; S(5):09-16.

Working Group IAPAPAAPG. (2013). IAP/APA evidence-based guidelines for the management of acute pancreatitis. Pancreatology. 2013;13(4 Suppl 2):e1-15.

Parniczky, A., Lantos, T., Toth E.M., et al.(201 9). Antibiotic therapy in acute pancreatitis: from global overuse to evidence based recommendations. Pancreatology. 19(4):488–99.

Dellinger, E.P., Forsmark CE, Layer P, et al.(2012). Determinant-based classification of acute pancreatitis severity: an international multidisciplinary consultation. Ann Surg. 256(6):875–80.

Harrison, D.A, D‘Amico, G., Singer, M.(2007). The Pancreatitis Outcome Prediction (POP) score: a new prognostic index for patients with severe acute pancreatitis. Crit Care Med ; 35:1703-8.

Kheradmand, M., Ranjbaran, H., Alizadeh-Navaei R, et al.,(2021). Association between White Blood Cells Count and Diabetes Mellitus in Tabari Cohort Study: A Case-Control Study.

Oda, E.( 2015). High-sensitivity C-reactive protein, but not white blood cell count, independently predicted incident diabetes in a Japanese health screening population. Acta Diabetol. 52:983–990.

Du, X., Zhu, B., Hu, G., Mao, W., Wang, S., Zhang, H., ... & Shi, Z. (2009). U‐shape association between white blood cell count and the risk of diabetes in young Chinese adults. Diabetic medicine, 26(10), 955-960.

Qu, D., Liu, J., Lau, C.W., Huang, Y.( 2014). IL-6 in diabetes and cardiovascular complications. Br J Pharmacol. 171:3595–603.

Kashima, S., Inoue, K., Matsumoto, M., and Akimoto K.(2019). White blood cell count and c-reactive protein independently predicted incident diabetes: Yuport medical checkup center study. Endocr Res. 44:127–37.

Chan, J. C., Malik, V., Jia, W., Kadowaki, T., Yajnik, C. S., Yoon, K. H., & Hu, F. B. (2009). Diabetes in Asia: epidemiology, risk factors, and pathophysiology. Jama, 301(20), 2129-2140.

Mohammed, A. A., & Sonawane, K. D. (2022). Destabilizing Alzheimer's Aβ42 protofibrils with oleocanthal: In-silico approach. BIOINFOLET-A Quarterly Journal of Life Sciences, 19(3), 288-295..

Yue S., Zhang J., Wu J. et al.,(2015).Use of the Monocyte-to- Lymphocyte Ratio to Predict Diabetic Retinopathy. Int J Environ Res Public Health. 2015 Aug; 12(8): 10009–10019.

Wang, Y., Yang, P., Yan, Z., Liu, Z., Ma, Q., Zhang, Z., ... & Su, Y. (2021). The relationship between erythrocytes and diabetes mellitus. Journal of Diabetes Research, 2021.

Zhou, Z., Mahdi A., Tratsiakovich Y., et al.(2018). Erythrocytes From Patients With Type 2 Diabetes Induce Endothelial Dysfunction Via Arginase I. Journal of the American College of Cardiology. 2018;72(7):769–780.

Sprague R. S., Stephenson A. H., Bowles E. A.,et al.,(2006).Reduced expression of Gi in erythrocytes of humans with type 2 diabetes is associated with impairment of both cAMP generation and ATP release. Diabetes. 55(12):3588–3593.

Lee, K. M., Kim, W. H., Lee, J. H., & Choi, M. S. S. (2013). Risk factors of treatment failure in diabetic foot ulcer patients. Archives of Plastic Surgery, 40(02), 123-128.

Bali, M., and Thomas, S. R. (2001 ). Activation vers l'avant de la glycolyse de l'erythrocyte humain : une etude par modelisation mathematique. Comptes Rendus de l'Académie des Sciences. Série III. 2001;324(3):185–199.

Casqueiro, J., Casqueiro, J., Alves C. (2012). Infections in patients with diabetes mellitus: A review of pathogenesis. Indian journal of endocrinology and metabolism. 16 Suppl1:S27.

Driscoll, J.A., Brody, S.L., Kollef, M.H.(2007 ). The epidemiology, pathogenesis and treatment of Pseudomonas aeruginosa infections. Drugs. 67(3):351–68.

Dunyach-Remy, C., Essebe C. N., Sotto A. (2016 ). Staphylococcus aureus Toxins and Diabetic Foot Ulcers: Role in Pathogenesis and Interest in Diagnosis. Toxins, 8( 209):1-20.

Wilson, G.J.; Seo, K.S.; Cartwright, R.Aet al. (2011).A novel core genome-encoded superantigen contributes to lethality of community- associated MRSA necrotizing pneumonia. PLoS Pathog., 7, e1002271.

Becker, K.; Friedrich, A.W.; Lubritz, Get al., (2003).Prevalence of genes encoding pyrogenic toxin superantigens and exfoliative toxins among strains of Staphylococcus aureus isolated from blood and nasal specimens. J. Clin. Microbiol., 41: 1434–1439.

Liau, M., Long, V., Yang S, Tan K, Aw D. (2016). Pigmented purpuric dermatosis in Singapore: a clinic-epidemiological characterisation. Hong Kong Journal of Dermatology & Venereology. 24(2):65–69.

Demirseren, D.D., Emre, S., Akoglu, G., et al. (2014). Relationship between skin diseases and extracutaneous complications of diabetes mellitus: clinical analysis of 750 patients. American journal of clinical dermatology. 15(1):65–70.

Serrao R, Zirwas M, English JC. (2007) Palmar erythema. American journal of clinical dermatology. 8(6):347–56.

Van Hattem, S., Bootsma, A.H., Thio HB. (2008). Skin manifestations of diabetes. Cleve Clin J Med. 75(11):772–74.

Oumeish, O.Y.(2008). Skin disorders in patients with diabetes. Clinics in dermatology. 26(3):235–42.

Bristow,I. (2008). Non‐ulcerative skin pathologies of the diabetic foot. Diabetes/metabolism research and reviews. 24(S1).

Yesudian PD, Nwabudike LC, de Berker D. 2(2022).Nail changes in diabetes. Clin Exp Dermatol. 47(1):9–15. Epub 2021 Sep 21.

Bustan, R.S., Wasim, D., Yderstræde, K.B., and Bygum, A. (2017). Specific skin signs as a cutaneous marker of diabetes mellitus and the prediabetic state-a systematic review. Danish medical journal. ;64(1) .

Morgan, A.J, Schwartz RA. (2008). Diabetic dermopathy: A subtle sign with grave implications. Journal of the American Academy of Dermatology. ;58(3):447–51.

Goyal, A, Raina S, Kaushal SS, Mahajan V, Sharma NL.( 2010). Pattern of cutaneous manifestations in diabetes mellitus. Indian journal of dermatology. ;55(1):39.

Sawatkar G, Kanwar A, Dogra S, Bhadada S, Dayal D.(2014). Spectrum of cutaneous manifestations of type 1 diabetes mellitus in 500 south Asian patients. British Journal of Dermatology. 171(6):1402–06.

Pavicic, T. and Korting, H.C. (2006). Xerosis and callus formation as a key to the diabetic foot syndrome: dermatologic view of the problem and its management. JDDG. Journal der Deutschen Dermatologischen Gesellschaft. 4(11):935–41.

O'Donnell, T.F., Passman, M.A., Marston, W.A. et al. (2014). "Management of venous leg ulcers: clinical practice guidelines of the Society for Vascular Surgery ® and the American Venous Forum". Journal of Vascular Surgery. 60 (2 Suppl): 3S–59S.

Phillips, P., Lumley, E., Duncan, R., Aber, A et al.,(2018). "A systematic review of qualitative research into people's experiences of living with venous leg ulcers" (PDF). J Adv. N: 74 (3): 550–563.

Robertson, L. E.C., and Fowkes, F. (2008). Epidemiology of chronic venous disease. Phlebology, 23:103-111.

Kistner, R.L. E.B., and Masuda, E.( 1996). Diagnosis of chronic venous disease of the lower extremities: the ―CEAP‖ classification. Mayo Clin Proc.71: 338-345.

Lal, B.K (2015). "Venous ulcers of the lower extremity: Definition, epidemiology, and economic and social burdens". Seminars in Vascular Surgery. 28 (1): 3–5.

Commons, R.J., Raby E., Athan E., Bhally H., Chen S., Guy S., Ingram P.R., Lai K., Lemoh C., and Lim L.-L.(2018). Managing diabetic foot infections: A survey of Australasian infectious diseases clinicians. J. Foot Ankle Res. 11:13.

Sadeghpour Heravi, F., Zakrzewski, M., Vickery, K., G. Armstrong, D., & Hu, H. (2019). Bacterial diversity of diabetic foot ulcers: current status and future prospectives. Journal of clinical medicine, 8(11), 1935.

Rhodes, C. J. (2005). Type 2 diabetes-a matter of ß-cell life and death?. Science, 307(5708), 380-384.

Swarna, S.R., Radha, M., Gomathi, S. et al.( 2012). A study of Biofilm on Diabetic Foot Ulcer. Int. J. Res. Pharm. and Biom.Sci. 3(4):1809– 1814.

Shankar, E.M., Mohan, V., Premalatha, G. et al. (2005).Bacterial etiology of diabetic foot infections in South India. Eur J Intern Med. 16:56770.

Banu, A., Hassan, N.M.M., Rajkumar, J., and Srinivasa, S.(2015). Spectrum of bacteria associated with diabetic foot ulcer and biofilm formation: A prospective study. Australas Med J. 8(9):280-285.

Bansal, E., Garg, A., Bhatia, S., Attri, A. K., & Chander, J. (2008). Spectrum of microbial flora in diabetic foot ulcers. Indian journal of pathology and microbiology, 51(2), 204.

Simão, V. P., Cury, C. S., Tavares, G. M. Z., Ortega, G. C., Ribeiro, A. C., Santos, G. S., & Lana, J. F. S. D. (2022). Platelet-rich plasma application in diabetic ulcers: A review. World Journal of Dermatology, 10(1), 1-9.

Tascini C., Piaggesi A., Tagliaferri E., et al.,( 2011). Microbiology at first visit of moderate-to-severe diabetic foot infection with antimicrobial activity and a survey of quinolone monotherapy. Diabetes Res. Clin. Pract. 94:133–139.

Jneid, J., Cassir, N., Schuldiner, S., Jourdan, N., Sotto, A., Lavigne, J. P., & La Scola, B. (2018). Exploring the microbiota of diabetic foot infections with culturomics. Frontiers in cellular and infection microbiology, 8, 282.

Al Benwan, K., Al Mulla, A., and Rotimi, V.O.( 2012). A study of the microbiology of diabetic foot infections in a teaching hospital in Kuwait. J. Infect. Public Health. 5:1–8.

Prompers, L., Huijberts, M., Apelqvist, J., Jude, E., Piaggesi, A., Bakker, K., ... & Schaper, N. (2007). High prevalence of ischaemia, infection and serious comorbidity in patients with diabetic foot disease in Europe. Baseline results from the Eurodiale study. Diabetologia, 50, 18-25.

Abdulrazak, A., Bitar, Z. I., Al-Shamali, A. A., & Mobasher, L. A. (2005). Bacteriological study of diabetic foot infections. Journal of Diabetes and its Complications, 19(3), 138-141.

Cho L.A.R, Leem H., Lee J., Chan Park, K. (2005). Reversal of silver sulfadiazine-impaired wound healing by epidermal growth factor. Biomaterials 26: 4670-4676.

Kamble, S. A., Barale, S. S., Mohammed, A. A., Paymal, S. B., Naik, N. M., & Sonawane, K. D. (2024). Structural insights into the potential binding sites of Cathepsin D using molecular modelling techniques. Amino Acids, 56(1), 33.

Chen, X. and Schluesener ,H.J. (2008). Nanosilver: A nanoproduct in medical application. Toxicol Lett 176: 1-12.

Kreytsberg, G.N., Gracheva, I.E., Kibrik B.S., Golikov, I.V. (2011). Antituberculous effect of silver nanoparticles. J Phys Conf Ser 291: 12030.

UcKay, I., Gariani, K., Pataky, Z., et al., (2014). Diabetic foot infections: State-of-the-art. Diabetes Obes Metab 16: 305-316.

Maldonado-Vegaa, M., Guzmánb D., Camarena-Pozosc D.A., et al., (2021). Application of silver nanoparticles to reduce bacterial growth on leather for footwear manufacturing. Journal of Applied Research and Technology 19 : 41-48.

Choudhurya, H., Pandeya M., QingY., et al., (2020). Silver nanoparticles: Advanced and promising technology in diabetic wound therapy. Materials Science and Engineering,112:1-16.

Paladini, F. and Pollini, M.(2019). Antimicrobial Silver Nanoparticles for Wound Healing Application: Progress and Future Trends. Materials (Basel). 12(16): 2540.

Faúndez, G. Troncoso, M. Navarrete, P. et al., (2004). Antimicrobial activity of copper surfaces against suspensions of Salmonella enterica and Campylobacter jejuni. BMC Microbiol., 4: 19.

Perelshtein, I. Applerot, G. Perkas, N. et al., (2009). CuO-cotton nanocomposite:Formation, morphology, and antibacterial activity. Surf. Coat Technol., 204: 54–57.

El-Naggar, M.E. Abd-Al-Aleem, A.H. Abu-Saied, et al., (2021).Synthesis of environmentally benign antimicrobial dressing nanofibers based on polycaprolactone blended with gold nanoparticles and spearmint oil nanoemulsion. J. Mater. Res., 15:3447–3460.

Li, Q. Lu, F. Zhou, G. Yu, K. et al., (2017). Silver inlaid with gold nanoparticle/chitosan wound dressing enhances antibacterial activity and porosity, and promotes wound healing. Biomacromolecules, 18: 3766– 3775.

Salvo, J. and Sandoval, C.(2022). Role of copper nanoparticles in wound healing for chronic wounds: literature review.

Alizadeh, S. Seyedalipour, B. Shafieyan, et al., (2019). Copper nanoparticles promote rapid wound healing in acute full thickness defect via acceleration of skin cell migration, proliferation, and neovascularization. Biochem. Biophys. Res. Commun., 517: 684–690.

Shrivastava, S., Bera, T., Roy, A., Singh, G., et al.,(2007).Characterization of enhanced antibacterial effects of novel silver nanoparticles. Nanotechnology. 18:225103.

Chaloupka, K., Malam, Y., Seifalian, A.M. (2010). Nanosilver as a new generation of nanoproduct in biomedical applications. Trends Biotechnol 28: 580-588.

Revelli, D., Lydikson, C.G., Smith, J.D.( 2011). A unique silver sol with broad antimicrobial properties. Antimicrobial. 11:5-16.

Rai, M.K., Deshmukh, S.D., Ingle AP, Gade AK.(2012). Silver nanoparticles: the powerful nanoweapon against multidrug-resistant bacteria. J Appl Microbiol. 112:841-852.

Munger, M.A., Radwanski P, Hadlock GC, et al.(2014). In vivo human time-exposure study of orally dosed commercial silver nanoparticles. Nanomedicine. 10:1-9.

Essa, M. S., Ahmad, K. S., Zayed, M. E., et al.,(2021).Comparative Study Between Silver Nanoparticles Dressing (SilvrSTAT Gel) and Conventional Dressing in Diabetic Foot Ulcer Healing: A Prospective Randomized Study. The International Journal of Lower Extremity Wounds 1-8.

Sarvajnamurthy, S., Suryanarayan, S., Budamakuntala, L., et al., (2013).Autologous platelet rich plasma in chronic venous ulcers: study of 17 cases. J Cutan Aesthet Surg. 6:97-99.

Baltzis, D., Eleftheriadou, I., Veves, A.( 2014). Pathogenesis and treatment of impaired wound healing in diabetes mellitus: new insights. Adv Ther. 31:817-836.

Alex, R., Ratnaraj, B., Winston, B. et al.(2010). Risk Factors for Foot Ulcers in Patients with Diabetes Mellitus – A Short Report from Vellore, South India. Indian Journal of Community Medicine : Official Publication of Indian Association of Preventive & Social Medicine. 35(1):183–5.

Caldwell, R. B., Bartoli, M., Behzadian, M. A., El‐Remessy, A. E., Al‐Shabrawey, M., Platt, D. H., & Caldwell, R. W. (2003). Vascular endothelial growth factor and diabetic retinopathy: pathophysiological mechanisms and treatment perspectives. Diabetes/metabolism research and reviews, 19(6), 442-455.

de Lacerda Coriolano, D., de Souza, J. B., Bueno, E. V., Medeiros, S. M. D. F. R. D. S., Cavalcanti, I. D. L., & Cavalcanti, I. M. F. (2021). Antibacterial and antibiofilm potential of silver nanoparticles against antibiotic-sensitive and multidrug-resistant Pseudomonas aeruginosa strains. Brazilian Journal of Microbiology, 52, 267-278.

Guo, Y., Song, G., Sun, M., Wang, J., & Wang, Y. (2020). Prevalence and therapies of antibiotic-resistance in Staphylococcus aureus. Frontiers in cellular and infection microbiology, 10, 107.

Huang, T.S., Lee, S.S. J., Lee, C.C., and Chang, F.C. (2020). Detection of Carbapenem-Resistant Klebsiella pneumoniae on the Basis of Matrix- Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry by Using Supervised Machine Learning Approach. PloS One 15: e0228459.

Kartika, R. W., Alwi, I., Suyatna, F. D., Yunir, E., Waspadji, S., Immanuel, S., ... & Bardosono, S. (2021). The role of VEGF, PDGF and IL-6 on diabetic foot ulcer after Platelet Rich Fibrin+ hyaluronic therapy. Heliyon, 7(9), e07934.

Lipsky, B. A., Senneville, É., Abbas, Z. G., Aragón‐Sánchez, J., Diggle, M., Embil, J. M., ... & International Working Group on the Diabetic Foot (IWGDF). (2020). Guidelines on the diagnosis and treatment of foot infection in persons with diabetes (IWGDF 2019 update). Diabetes/metabolism research and reviews, 36, e3280.

Liu, Y., Liu, Y., Deng, J., Li, W., & Nie, X. (2021). Fibroblast growth factor in diabetic foot ulcer: progress and therapeutic prospects. Frontiers in endocrinology, 1348.

Maldonado-Vegaa, M., Guzmánb D., Camarena-Pozosc D.A., et al., (2021). Application of silver nanoparticles to reduce bacterial growth on leather for footwear manufacturing. Journal of Applied Research and Technology 19 : 41-48.

Pastore, D., Deja-Simoni, A., De Stefano, A., Pacifici, F., Cela, E., Infante, M., ... & Donadel, G. (2022). Risk factors for diabetic foot ulcers: an Albanian retrospective study of inpatients with type 2 diabetes. European Review for Medical and Pharmacological Sciences, 26(2), 558-572.

Pasupuleti, V. R., Arigela, C. S., Gan, S. H., Salam, S. K. N., Krishnan, K. T., Rahman, N. A., & Jeffree, M. S. (2020). A review on oxidative stress, diabetic complications, and the roles of honey polyphenols. Oxidative medicine and cellular longevity, 2020. Patil,.

Most read articles by the same author(s)