The Biochemical, Physiological, And Clinical Importance of Ceruloplasmin: A Review

Authors

  • Wafaa Mohammed Ridha Abdel Rasoul The General Directorate of Education in Najaf Al-Ashraf, Iraq
  • Mariam Akeel Al-Taee Department of Medical Laboratory Techniques/ College of Medical Technology/ Islamic University of Najaf
  • Hanaa Mumtaz Hussein The General Directorate of Education in Najaf Al-Ashraf, Iraq
  • Ali A. Al-fahham Faculty of Nursing, University of Kufa, Iraq

Keywords:

Acute Phase Proteins, Ceruloplasmin, Copper Metabolism, Hepatocytes

Abstract

Ceruloplasmin is a glycoprotein multicopper oxidase and the main copper transport protein in humans. It is responsible for metal homeostasis, redox equilibrium, and inflammatory response in human plasma. It is produced mainly in the liver and acts as a ferroxidase enzyme that catalyzes the oxidation of ferrous iron to ferric iron, enabling the transport of iron while reducing free radical formation from iron. In this way, ceruloplasmin participates in control of systemic iron homeostasis, antioxidant defense and tissue protection against oxidative damage. Furthermore, as a positive APPs itself, ceruloplasmin is considered the regulator of innate immune response and its circulating levels have been shown to raise during inflammation, infection and tissue injury. The clinical utility of ceruloplasmin testing is well established in the diagnosis and monitoring of disorders of copper metabolism, including Wilson’s disease, with emerging applications in cardiovascular disease and metabolic syndrome, neurodegenerative diseases as well as chronic inflammatory diseases. Changes in the concentration, enzymatic activity and molecular structure of ceruloplasmin correlate with disease severity and prognosis. The aim of this review is to summarize the biochemistry, physiology and clinical implications of ceruloplasmin in view of recent developments and new perspectives relevant to its function as a biomarker and mediator in health a disease.

References

Arenas de Larriva, A. P., Limia-Pérez, L., Alcalل-Dيaz, J. F., Alonso, A., Lَpez-Miranda, J., & Delgado-Lista, J. (2020). Ceruloplasmin and Coronary Heart Disease-A Systematic Review. Nutrients, 12(10), 3219. https://doi.org/10.3390/nu12103219

Brewer, G. J., Kanzer, S. H., Zimmerman, E. A., Celmins, D. F., Heckman, S. M., & Dick, R. (2010). Copper and ceruloplasmin abnormalities in Alzheimer's disease. American journal of Alzheimer's disease and other dementias, 25(6), 490–497. https://doi.org/10.1177/1533317510375083

Esposito, G., Cosimi, P., Balzamino, B. O., Bruno, M., Squitti, R., Dinice, L., Scarinci, F., Rongioletti, M. C. A., Cacciamani, A., & Micera, A. (2025). Ceruloplasmin and Ferritin Changes in Ocular Fluids from Patients with Vitreoretinal Diseases: Relation with Neuroinflammation and Drusen Formation. International Journal of Molecular Sciences, 26(13), 6307. https://doi.org/10.3390/ijms26136307

Hellman, N. E., & Gitlin, J. D. (2002). Ceruloplasmin metabolism and function. Annual review of nutrition, 22, 439–458. https://doi.org/10.1146/annurev.nutr.22.012502.114457Hellman, N. E., Kono, S., Mancini, G. M. S., Hoogeboom, A. J. M., De Jong, G. J., & Gitlin, J. D. (2002). Mechanisms of copper incorporation into human ceruloplasmin. Journal of Biological Chemistry, 277(48), 46632–46638. https://doi.org/10.1074/jbc.M206246200

Jain, S., Hambarde, S., & Bangar, S. (2025). Study of diagnostic utility of serum ceruloplasmin in Wilson’s disease: A prospective observational study. Journal of Chemical Health Risks, 15(6), 2449–2455.

Liu, Z., Wang, M., Zhang, C., Zhou, S., & Ji, G. (2022). Molecular Functions of Ceruloplasmin in Metabolic Disease Pathology. Diabetes, metabolic syndrome and obesity : targets and therapy, 15, 695–711. https://doi.org/10.2147/DMSO.S346648

Lopez MJ, Royer A, Shah NJ (2023). Biochemistry, Ceruloplasmin. [Updated 2023 Feb 24]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK554422/

Nagi, S. A. M., Elashmawy, M. I., Elashkar, A. E., Hafez, M. Z., Emara, A. A. E., Abdelhay, O. M., Fouda, A. A. B., Doma, M. A., Awad, A. M., Saba, A. M., Ahmed, H. A., Allah, A. M. G., Abdelraheem, F. M., Gad, M. A., Soliman, M. A., Abdalrhman, T. I., Awad, K. H., El-Lebedy, I. A. K. M., Abdelnaser, M. M., Kareem, M. Z. A., … Khalifa, S. S. M. (2025). Serum copper and ceruloplasmin levels as biomarkers reflecting liver fibrosis in children with autoimmune hepatitis. Clinical and experimental pediatrics, 68(11), 909–920. https://doi.org/10.3345/cep.2025.01011

Ramos, D., Mar, D., Ishida, M., Vargas, R., Gaite, M., Montgomery, A., & Linder, M. C. (2016). Mechanism of Copper Uptake from Blood Plasma Ceruloplasmin by Mammalian Cells. PloS one, 11(3), e0149516. https://doi.org/10.1371/journal.pone.0149516

Reilly, C. A., & Aust, S. D. (1997). Stimulation of the ferroxidase activity of ceruloplasmin during iron loading into ferritin. Archives of biochemistry and biophysics, 347(2), 242–248. https://doi.org/10.1006/abbi.1997.0351

Reștea, P.-A., Țigan, Ș., Vicaș, L. G., Fritea, L., Marian, E., Jurca, T., Pallag, A., Mureșan, I. L., Moisa, C., Micle, O., & Mureșan, M. E. (2023). Serum Level of Ceruloplasmin, Angiotensin-Converting Enzyme and Transferrin as Markers of Severity in SARS-CoV-2 Infection in Patients with Type 2 Diabetes. Microbiology Research, 14(4), 1670-1686. https://doi.org/10.3390/microbiolres14040115

Roeser, H. P., Lee, G. R., Nacht, S., & Cartwright, G. E. (1970). The role of ceruloplasmin in iron metabolism. The Journal of clinical investigation, 49(12), 2408–2417. https://doi.org/10.1172/JCI106460

Sato, M., & Gitlin, J. D. (1991). Mechanisms of copper incorporation during the biosynthesis of human ceruloplasmin. The Journal of biological chemistry, 266(8), 5128–5134.

Smyła-Gruca, W., Szczurek-Wasilewicz, W., Skrzypek, M., Karmański, A., Romuk, E., Jurkiewicz, M., Gąsior, M., & Szyguła-Jurkiewicz, B. (2024). Ceruloplasmin, Catalase and Creatinine Concentrations Are Independently Associated with All-Cause Mortality in Patients with Advanced Heart Failure. Biomedicines, 12(3), 662. https://doi.org/10.3390/biomedicines12030662

Vrancken, K., Schroeder, H. J., Longo, L. D., Power, G. G., & Blood, A. B. (2013). Role of ceruloplasmin in nitric oxide metabolism in plasma of humans and sheep: a comparison of adults and fetuses. American journal of physiology. Regulatory, integrative and comparative physiology, 305(11), R1401–R1410. https://doi.org/10.1152/ajpregu.00266.2013

Wang, Y., Li, D., Xu, K., Wang, G., & Zhang, F. (2025). Copper homeostasis and neurodegenerative diseases. Neural regeneration research, 20(11), 3124–3143. https://doi.org/10.4103/NRR.NRR-D-24-00642

Ziliotto, N., Lencioni, S., Cirinciani, M., Zanardi, A., Alessio, M., Soldà, G., Da Pozzo, E., Asselta, R., & Caricasole, A. (2025). Functional characterisation of missense ceruloplasmin variants and real-world prevalence assessment of Aceruloplasminemia using population data. EBioMedicine, 113, 105625. https://doi.org/10.1016/j.ebiom.2025.105625

Downloads

Published

2026-01-23

Most read articles by the same author(s)