Pathogenicity and Antimicrobial Resistance of Mycobacterium Tuberculosis: A Review Article

Authors

  • Khudhur Raheem Obayes Microbiology Department, College of Veterinary Medicine, Al-Qasim Green University, Babylon 51013, Iraq
  • Rafif Aman Mahammed Department of Biotechnology, Universiti Teknologi Malaysia (UTM), 81310 Skudai, Johor, Malaysia
  • Fatima Omer Saber Department of Microbiology, College of Medicine, University of Al-iraqia, Iraq
  • Ali A. Al- fahham Faculty of Nursing, University of Kufa, Iraq

Keywords:

Pathogenicity, Antimicrobial Resistance, Mycobacterium tuberculosis

Abstract

Mycobacterium tuberculosis (Mtb) induced tuberculosis (TB), is a severe public health problem world widely because of its intricate pathobiology and increasing antimicrobial resistance. Mtb possess a repertoire of virulence factors that can enable it to remain alive within cells, escape the immune system to form granulomas (multi-cellular aggregates), establish latency, and reactivate disease, which complicates the control and elimination of this disease. Concurrently, the emergence of multidrug-resistant (MDR) and extensively drug-resistant (XDR) TB has made conventional antimicrobial therapy dramatically less effective, with prolonged treatment durations and worse clinical outcomes. Resistance arises through chromosomal mutations, efflux pump-- mediated resistance, and by phenotypic drug tolerance as well as due to limited penetration of drugs across the hydrophobic mycobacterial cell wall. Advances in molecular diagnostics, whole genome surveillance and development of new therapies such as a few host-directed therapies and also the experimental anti-virulence strategies have lead to an improved understanding about TB pathogenesis and resistance dynamics too. This review highlights the emerging disease-causing of Mycobacterium tuberculosis and offers an overview of currently growing sources of antimicrobial resistance and treatment management issues, seeking to steer possible future direction for TB control and management.

References

Al-Asady, I. N., & Ali, J. F. (2025). Host-pathogen interactions in Mycobacterium tuberculosis: Molecular mechanisms and implications for treatment. International Journal of Medical Science and Dental Health, 10(11), 73–80. https://doi.org/10.55640/ijmsdh-10-09-07

Aljeldah M. M. (2020). Antibiotic sensitivity of Mycobacterium tuberculosis isolates; a retrospective study from a Saudi tertiary hospital. Journal of Taibah University Medical Sciences, 15(2), 142–147. https://doi.org/10.1016/j.jtumed.2020.01.003

Chauhan, A., Kumar, M., Kumar, A., & Kanchan, K. (2021). Comprehensive review on mechanism of action, resistance and evolution of antimycobacterial drugs. Life sciences, 274, 119301. https://doi.org/10.1016/j.lfs.2021.119301

Dheda, K., Gumbo, T., Maartens, G., Dooley, K. E., McNerney, R., Murray, M., … Lange, C. (2017). The epidemiology, pathogenesis, transmission, diagnosis, and management of multidrug-resistant, extensively drug-resistant, and incurable tuberculosis. The Lancet Respiratory Medicine, 5(4), 291–360.

https://doi.org/10.1016/S2213-2600(17)30079-6

Ehlers, S., & Schaible, U. E. (2013). The granuloma in tuberculosis: dynamics of a host-pathogen collusion. Frontiers in immunology, 3, 411. https://doi.org/10.3389/fimmu.2012.00411

Falzon, D., Gandhi, N., Migliori, G. B., Sotgiu, G., Cox, H. S., Holtz, T. H., Hollm-Delgado, M. G., Keshavjee, S., DeRiemer, K., Centis, R., D'Ambrosio, L., Lange, C. G., Bauer, M., Menzies, D., & Collaborative Group for Meta-Analysis of Individual Patient Data in MDR-TB (2013). Resistance to fluoroquinolones and second-line injectable drugs: impact on multidrug-resistant TB outcomes. The European respiratory journal, 42(1), 156–168. https://doi.org/10.1183/09031936.00134712

Guo, Y., Yang, J., Wang, H., Sha, W., & Yu, F. (2025). Key resistance-associated mutations in multidrug-resistant tuberculosis: a genomic study from Shanghai, China, with a focus on aminoglycosides. BMC microbiology, 25(1), 702. https://doi.org/10.1186/s12866-025-04446-x

Jeyasankar, S., Kalapala, Y. C., Sharma, P. R., & Agarwal, R. (2024). Antibacterial efficacy of mycobacteriophages against virulent Mycobacterium tuberculosis. BMC microbiology, 24(1), 320. https://doi.org/10.1186/s12866-024-03474-3

Jowsey, W. J., Cook, G. M., & McNeil, M. B. (2024). Antibiotic resistance in Mycobacterium tuberculosis alters tolerance to cell wall-targeting inhibitors. JAC-antimicrobial resistance, 6(3), dlae086. https://doi.org/10.1093/jacamr/dlae086

Li, H., Yuan, J., Duan, S., & Pang, Y. (2022). Resistance and tolerance of Mycobacterium tuberculosis to antimicrobial agents-How M. tuberculosis can escape antibiotics. WIREs mechanisms of disease, 14(6), e1573. https://doi.org/10.1002/wsbm.1573

Lukas, K., Dang, M. T., Necas, C., & Venketaraman, V. (2025). Anti-TB Drugs for Drug-Sensitive and Drug-Resistant Mycobacterium tuberculosis: A Review. Current issues in molecular biology, 47(9), 776. https://doi.org/10.3390/cimb47090776

Lyu, M. Y., Lai, H. L., Peng, H. R., Luo, H., Zhou, J., Ma, W. A., Zhang, C. Y., Ruan, H. X., Liu, Y., Chen, J., & Ying, B. W. (2025). Immunotherapy for tuberculosis: current strategies and future directions. Military Medical Research, 12(1), 68. https://doi.org/10.1186/s40779-025-00655-7

Mboowa, G. (2025). Reimagining tuberculosis control in the era of genomics: The case for global investment in Mycobacterium tuberculosis genomic surveillance. Pathogens, 14(10), 975. https://doi.org/10.3390/pathogens14100975

Mohammadnabi, N., Shamseddin, J., Emadi, M., Bodaghi, A. B., Varseh, M., Shariati, A., Rezaei, M., Dastranj, M., & Farahani, A. (2024). Mycobacterium tuberculosis: The Mechanism of Pathogenicity, Immune Responses, and Diagnostic Challenges. Journal of clinical laboratory analysis, 38(23), e25122. https://doi.org/10.1002/jcla.25122

Nasiri, M. J., & Venketaraman, V. (2025). Advances in host–pathogen interactions in tuberculosis: Emerging strategies for therapeutic intervention. International Journal of Molecular Sciences, 26(4), 1621. https://doi.org/10.3390/ijms26041621

Rahman F. (2024). Characterizing the immune response to Mycobacterium tuberculosis: a comprehensive narrative review and implications in disease relapse. Frontiers in immunology, 15, 1437901. https://doi.org/10.3389/fimmu.2024.1437901

Roque-Borda, C. A., Vishwakarma, S. K., Ramirez Delgado, O. J., de Souza Rodrigues, H. L., Primo, L. M. D., Campos, I. C., de Lima, T. S., Perdigão, J., & Pavan, F. R. (2025). Peptide-Based Strategies Against Mycobacterium tuberculosis Covering Immunomodulation, Vaccines, Synergistic Therapy, and Nanodelivery. Pharmaceuticals, 18(10), 1440. https://doi.org/10.3390/ph18101440

Szumowski, J. D., Adams, K. N., Edelstein, P. H., & Ramakrishnan, L. (2013). Antimicrobial efflux pumps and Mycobacterium tuberculosis drug tolerance: evolutionary considerations. Current topics in microbiology and immunology, 374, 81–108. https://doi.org/10.1007/82_2012_300

Ye, M., Yuan, W., Molaeipour, L., Azizian, K., Ahmadi, A., & Kouhsari, E. (2021). Antibiotic heteroresistance in Mycobacterium tuberculosis isolates: a systematic review and meta-analysis. Annals of clinical microbiology and antimicrobials, 20(1), 73. https://doi.org/10.1186/s12941-021-00478-z

Downloads

Published

2026-01-21