The Etiology And Clinical Interpretation of Thrombocytopenia: A Review
Keywords:
Platelets, Thrombocytopenia, Megakaryocytes, Blood ClottingAbstract
Thrombocytopenia can be encountered in a clinical setting with any of a variety of underlying pathological processes. Such pathology may result from decreased platelet production, increased peripheral destruction or abnormal distribution, or excessive consumption; and can be associated with everything from benign temporary conditions to life-threatening diseases. To accurately interpret thrombocytopenia, you need to understand integrated platelet physiology, bone marrow function, immune regulation and hemostasis. Advances in immunohematology and molecular biology in recent decades have shone a searching light on every aspect of thrombocytopenia, from the immune-mediated platelet destruction mechanism to thrombopoietin dysregulation, bone marrow failure and the consumptive coagulopathies. This article reviews what is known to be true about the many factors affecting blood platelet production, and the entire range of causative factors and pathological process entailed in besides deficient thrombopoiesis. Emphasis is placed on those biomarkers related most closely to the clinic and some key diagnostic (differential) points between causes were mentioned. An overall understanding of these levers should facilitate accurate diagnosis of thrombocytopenia along with appropriate risk stratification, and effective patient management.
References
Arias, K., Sun, W., Wang, S., Sorensen, E. N., Feller, E., Kaczorowski, D., Griffith, B., & Wu, Z. J. (2022). Acquired platelet defects are responsible for nonsurgical bleeding in left ventricular assist device recipients. Artificial organs, 46(11), 2244–2256. https://doi.org/10.1111/aor.14319
Aster, R. H., & Bougie, D. W. (2007). Drug-induced immune thrombocytopenia. The New England journal of medicine, 357(6), 580–587. https://doi.org/10.1056/NEJMra066469
Audia, S., Mahévas, M., Samson, M., Godeau, B., & Bonnotte, B. (2017). Pathogenesis of immune thrombocytopenia. Autoimmunity Reviews, 16(6), 620–632. https://doi.org/10.1016/j.autrev.2017.04.012
Banerjee, A., Tripathi, A., Duggal, S., Banerjee, A., & Vrati, S. (2020). Dengue virus infection impedes megakaryopoiesis in MEG-01 cells where the virus envelope protein interacts with the transcription factor TAL-1. Scientific reports, 10(1), 19587. https://doi.org/10.1038/s41598-020-76350-5
Crisan D. (2000). Molecular mechanisms in myelodysplastic syndromes and implications for evolution to acute leukemias. Clinics in laboratory medicine, 20(1), 49–viii.
Fattizzo, B., & Barcellini, W. (2020). Autoimmune Cytopenias in Chronic Lymphocytic Leukemia: Focus on Molecular Aspects. Frontiers in oncology, 9, 1435. https://doi.org/10.3389/fonc.2019.01435
Gando, S., Levi, M., & Toh, C. H. (2016). Disseminated intravascular coagulation. Nature reviews. Disease primers, 2, 16037. https://doi.org/10.1038/nrdp.2016.37
Greinacher A. (2015). Heparin-Induced Thrombocytopenia. The New England journal of medicine, 373(19), 1883–1884. https://doi.org/10.1056/NEJMc1510993
Jinna S., and Khandhar PB. (2023). Thrombocytopenia. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK542208/
Joly, B. S., Coppo, P., & Veyradier, A. (2017). Thrombotic thrombocytopenic purpura. Blood, 129(21), 2836–2846. https://doi.org/10.1182/blood-2016-10-709857
Kaushansky K. (2024). Thrombopoietin, the Primary Regulator of Platelet Production: From Mythos to Logos, a Thirty-Year Journey. Biomolecules, 14(4), 489. https://doi.org/10.3390/biom14040489
Lefrançais, E., Ortiz-Muñoz, G., Caudrillier, A., Mallavia, B., Liu, F., Sayah, D. M., Thornton, E. E., Headley, M. B., David, T., Coughlin, S. R., Krummel, M. F., Leavitt, A. D., Passegué, E., & Looney, M. R. (2017). The lung is a site of platelet biogenesis and a reservoir for haematopoietic progenitors. Nature, 544(7648), 105–109. https://doi.org/10.1038/nature21706
Machlus, K. R., & Italiano, J. E., Jr (2013). The incredible journey: From megakaryocyte development to platelet formation. The Journal of cell biology, 201(6), 785–796. https://doi.org/10.1083/jcb.201304054
Mangla, A., & Hamad, H. (2022). Thrombocytopenia in Pregnancy. In StatPearls. StatPearls Publishing. Retrieved from https://www.ncbi.nlm.nih.gov/books/NBK547705
Martínez-Carballeira, D., Bernardo, Á., Caro, A., Soto, I., & Gutiérrez, L. (2024). Pathophysiology, Clinical Manifestations and Diagnosis of Immune Thrombocytopenia: Contextualization from a Historical Perspective. Hematology reports, 16(2), 204–219. https://doi.org/10.3390/hematolrep16020021
Mititelu, A., Onisâi, M. C., Roșca, A., & Vlădăreanu, A. M. (2024). Current Understanding of Immune Thrombocytopenia: A Review of Pathogenesis and Treatment Options. International journal of molecular sciences, 25(4), 2163. https://doi.org/10.3390/ijms25042163
Moore, C. A., & Krishnan, K. (2023). Bone Marrow Failure. In StatPearls. StatPearls Publishing. Retrieved from https://www.ncbi.nlm.nih.gov/books/NBK459249/
Peck-Radosavljevic M. (2017). Thrombocytopenia in chronic liver disease. Liver international : official journal of the International Association for the Study of the Liver, 37(6), 778–793. https://doi.org/10.1111/liv.13317
Pène, F., Russell, L., & Aubron, C. (2025). Thrombocytopenia in the intensive care unit: diagnosis and management. Annals of intensive care, 15(1), 25. https://doi.org/10.1186/s13613-025-01447-x
Perera, M., & Garrido, T. (2017). Advances in the pathophysiology of primary immune thrombocytopenia. Hematology (Amsterdam, Netherlands), 22(1), 41–53. https://doi.org/10.1080/10245332.2016.1219497.
Pietras, N. M., Gupta, N., Justiz Vaillant, A. A., Ahmad, H., & Muco, E. (2024). Immune Thrombocytopenia. In StatPearls. StatPearls Publishing. Retrieved from https://www.ncbi.nlm.nih.gov/books/NBK562282
Provan, D., Arnold, D. M., Bussel, J. B., Chong, B. H., Cooper, N., Gernsheimer, T., Ghanima, W., Godeau, B., González-López, T. J., Grainger, J., Hou, M., Kruse, C., McDonald, V., Michel, M., Newland, A. C., Pavord, S., Rodeghiero, F., Scully, M., Tomiyama, Y., Wong, R. S., … Kuter, D. J. (2019). Updated international consensus report on the investigation and management of primary immune thrombocytopenia. Blood advances, 3(22), 3780–3817. https://doi.org/10.1182/bloodadvances.2019000812
Rasizadeh, R., Ebrahimi, F., Zamani Kermanshahi, A., Daei Sorkhabi, A., Sarkesh, A., Sadri Nahand, J., & Bannazadeh Baghi, H. (2024). Viruses and thrombocytopenia. Heliyon, 10(6), e27844. https://doi.org/10.1016/j.heliyon.2024.e27844
Semple, J. W., & Freedman, J. (2010). Platelets and innate immunity. Cellular and molecular life sciences : CMLS, 67(4), 499–511. https://doi.org/10.1007/s00018-009-0205-1
Sun, S., Urbanus, R. T., ten Cate, H., de Groot, P. G., de Laat, B., Heemskerk, J. W. M., & Roest, M. (2021). Platelet Activation Mechanisms and Consequences of Immune Thrombocytopenia. Cells, 10(12), 3386. https://doi.org/10.3390/cells10123386
Takamatsu, Y., Jimi, S., Sato, T., Hara, S., Suzumiya, J., & Tamura, K. (2007). Thrombocytopenia in association with splenomegaly during granulocyte-colony-stimulating factor treatment in mice is not caused by hypersplenism and is resolved spontaneously. Transfusion, 47(1), 41–49. https://doi.org/10.1111/j.1537-2995.2007.01061.x
Tripodi, A., & Mannucci, P. M. (2011). The coagulopathy of chronic liver disease. The New England journal of medicine, 365(2), 147–156. https://doi.org/10.1056/NEJMra1011170
Vainchenker, W., Besancenot, R., & Favale, F. (2013). [Megakaryopoiesis: Regulation of platelet production by thrombopoietin]. Bulletin de l'Académie Nationale de Médecine, 197(2), 395–406.
Yamada, S., & Asakura, H. (2024). How We Interpret Thrombosis with Thrombocytopenia Syndrome? International Journal of Molecular Sciences, 25(9), 4956. https://doi.org/10.3390/ijms25094956
Zhu, Y., Gu, H., Yang, L., Li, N., Chen, Q., Kang, D., Lin, S., Jing, Y., Jiang, P., Chen, Q., Luo, L., Liu, J., Chang, J., Li, Z., Wang, Y., Dai, X., Miller, H., Westerberg, L. S., Park, C. S., Kubo, M., … Liu, C. (2022). Involvement of MST1/mTORC1/STAT1 activity in the regulation of B-cell receptor signalling by chemokine receptor 2. Clinical and translational medicine, 12(7), e887. https://doi.org/10.1002/ctm2.887
