The Biochemistry, Functions, And Clinical Importance Acute Phase Proteins: A Review

Authors

  • Shahlaa Kh. Chabuk Physiology Department, Hammurabi Medical College, University of Babylon, Babylon, Iraq
  • Dhaneen Mahdi Department of Basic Science, Faculty of Dentistry, University of Kufa, Iraq
  • Baida Rihan Ali Department of Pathological Analysis, College of Science, University of Thi-Qar, Iraq
  • Ali A. Al-fahham Faculty of Nursing, University of Kufa, Iraq

Keywords:

Acute Phase Proteins, CRP, SAA, fibrinogen, haptoglobin, α1-acid, ceruloplasmin

Abstract

Acute phase proteins (APPs) are a heterogeneous group of plasma proteins whose concentrations change markedly in response to inflammation, infection, tissue injury, and metabolic stress. Synthesized predominantly by the liver under the regulation of pro-inflammatory cytokines, APPs exhibit diverse biochemical structures and functions that extend beyond their traditional role as nonspecific inflammatory markers. They actively participate in innate immune defense, modulation of oxidative stress, regulation of protease activity, lipid and metal metabolism, and maintenance of tissue homeostasis. Key APPs—including C-reactive protein, serum amyloid A, haptoglobin, α1-antitrypsin, and ceruloplasmin—demonstrate distinct physiological roles and clinically relevant response kinetics that reflect underlying disease processes. Aberrant or persistent alterations in APP levels are implicated in the pathogenesis of chronic inflammatory disorders, cardiovascular disease, metabolic syndromes, infectious diseases, and organ dysfunction. Clinically, APPs remain indispensable tools for disease diagnosis, activity assessment, and prognostic evaluation, although limitations related to specificity and biological variability persist. This review synthesizes current advances in the biochemistry, physiological functions, and clinical significance of major acute phase proteins, emphasizing their evolving translational relevance in modern laboratory and clinical medicine.

References

Ceciliani, F., Giordano, A., & Spagnolo, V. (2002). The systemic reaction during inflammation: the acute-phase proteins. Protein and peptide letters, 9(3), 211–223. https://doi.org/10.2174/0929866023408779

Eklund, K. K., Niemi, K., & Kovanen, P. T. (2012). Immune functions of serum amyloid A. Critical reviews in immunology, 32(4), 335–348. https://doi.org/10.1615/critrevimmunol.v32.i4.40

Greene, C. M., Marciniak, S. J., Teckman, J., Ferrarotti, I., Brantly, M. L., Lomas, D. A., Stoller, J. K., & McElvaney, N. G. (2016). α1-Antitrypsin deficiency. Nature reviews. Disease primers, 2, 16051. https://doi.org/10.1038/nrdp.2016.51

Hellman, N. E., & Gitlin, J. D. (2002). Ceruloplasmin metabolism and function. Annual review of nutrition, 22, 439–458. https://doi.org/10.1146/annurev.nutr.22.012502.114457

Janciauskiene, S., Wrenger, S., Immenschuh, S., Olejnicka, B., Greulich, T., Welte, T., & Chorostowska-Wynimko, J. (2018). The multifaceted effects of α1-antitrypsin on neutrophil functions. Frontiers in Pharmacology, 9, 341.

https://doi.org/10.3389/fphar.2018.00341

Langlois, M. R., & Delanghe, J. R. (1996). Biological and clinical significance of haptoglobin polymorphism in humans. Clinical chemistry, 42(10), 1589–1600

Levy, A. P., Asleh, R., Blum, S., Levy, N. S., Miller-Lotan, R., Kalet-Litman, S., Anbinder, Y., Lache, O., Nakhoul, F. M., Asaf, R., Farbstein, D., Pollak, M., Soloveichik, Y. Z., Strauss, M., Alshiek, J., Livshits, A., Schwartz, A., Awad, H., Jad, K., & Goldenstein, H. (2010). Haptoglobin: basic and clinical aspects. Antioxidants & redox signaling, 12(2), 293–304. https://doi.org/10.1089/ars.2009.2793

Li, H., Xiang, X., Ren, H., Xu, L., Zhao, L., Chen, X., & Long, H. (2020). Serum amyloid A is a biomarker of severe coronavirus disease and poor prognosis. Journal of Infection, 80(6), 646–655.

https://doi.org/10.1016/j.jinf.2020.03.035

Liu, F., Li, L., Xu, M., Wu, J., Luo, D., Zhu, Y., Li, B., Song, X., & Zhou, X. (2020). Prognostic value of interleukin-6, C-reactive protein, and procalcitonin in patients with COVID-19. Journal of clinical virology : the official publication of the Pan American Society for Clinical Virology, 127, 104370. https://doi.org/10.1016/j.jcv.2020.104370

Pepys, M. B., & Hirschfield, G. M. (2003). C-reactive protein: A critical update. The Journal of Clinical Investigation, 111(12), 1805–1812. https://doi.org/10.1172/JCI18921

Reily, C., Stewart, T. J., Renfrow, M. B., & Novak, J. (2019). Glycosylation in health and disease. Nature reviews. Nephrology, 15(6), 346–366. https://doi.org/10.1038/s41581-019-0129-4

Ridker, P. M. (2016). From C-reactive protein to interleukin-6 to interleukin-1: Moving upstream to identify novel targets for atheroprotection. Circulation Research, 118(1), 145–156.

https://doi.org/10.1161/CIRCRESAHA.115.306656

Roberts, E. A., & Schilsky, M. L. (2018). Diagnosis and treatment of Wilson disease: An update. Hepatology, 47(6), 2089–2111.

https://doi.org/10.1002/hep.22261

Sack, G. H. (2018). Serum amyloid A – A review. Molecular Medicine, 24(1), 46.

https://doi.org/10.1186/s10020-018-0047-0

Sandhaus, R. A., Turino, G., Brantly, M. L., Campos, M., Cross, C. E., Goodman, K., Hogarth, D. K., Knight, S. L., Stocks, J. M., Stoller, J. K., Strange, C., & Teckman, J. (2016). The Diagnosis and Management of Alpha-1 Antitrypsin Deficiency in the Adult. Chronic obstructive pulmonary diseases (Miami, Fla.), 3(3), 668–682. https://doi.org/10.15326/jcopdf.3.3.2015.0182

Schaer, D. J., Buehler, P. W., Alayash, A. I., Belcher, J. D., & Vercellotti, G. M. (2013). Hemolysis and free hemoglobin revisited: exploring hemoglobin and hemin scavengers as a novel class of therapeutic proteins. Blood, 121(8), 1276–1284. https://doi.org/10.1182/blood-2012-11-451229

Schmidt-Arras, D., & Rose-John, S. (2016). IL-6 pathway in the liver: From physiopathology to therapy. Journal of Hepatology, 64(6), 1403–1415. https://doi.org/10.1016/j.jhep.2016.02.004

Skjørringe, T., Møller, L. B., & Moos, T. (2012). Impairment of interrelated iron- and copper homeostatic mechanisms in brain contributes to the pathogenesis of neurodegenerative disorders. Frontiers in pharmacology, 3, 169. https://doi.org/10.3389/fphar.2012.00169

Sproston, N. R., & Ashworth, J. J. (2018). Role of C-reactive protein at sites of inflammation and infection. Frontiers in Immunology, 9, 754.

https://doi.org/10.3389/fimmu.2018.00754

Stanke, F., Janciauskiene, S., & Olejnicka, B. (2023). Editorial: Acute phase proteins as biomarkers and therapeutics in acute and chronic inflammatory conditions. Frontiers in Pharmacology, 14, Article 1145990. https://doi.org/10.3389/fphar.2023.1145990

Thiele, J. R., Zeller, J., Bannasch, H., Stark, G. B., Peter, K., & Eisenhardt, S. U. (2015). Targeting C-reactive protein in inflammatory disease by preventing conformational changes. Mediators of Inflammation, 2015, 372432.

https://doi.org/10.1155/2015/372432

Vashchenko, G., & MacGillivray, R. T. A. (2013). Multi-copper oxidases and human iron metabolism. Nutrients, 5(7), 2289–2313.

https://doi.org/10.3390/nu5072289

Westermark, G. T., Fändrich, M., & Westermark, P. (2015). AA amyloidosis: pathogenesis and targeted therapy. Annual review of pathology, 10, 321–344. https://doi.org/10.1146/annurev-pathol-020712-163913

Downloads

Published

2026-02-07