Molecular Crosstalk between Bacterial Two-Component Regulatory Systems and Host Immune Modulation: Implications for Antimicrobial Resistance and Pathogenic Persistence
Keywords:
Two-Component Regulatory Systems (TCSs), Host–Pathogen Interactions, Antimicrobial Resistance (AMR), Immune Modulation, Virulence Regulation, Pathogenic PersistenceAbstract
Bacterial two-component systems (TCSs) are versatile regulatory circuits that enable pathogens to sense environmental and host-derived signals and translate them into adaptive genetic responses. These systems, typically composed of a sensor histidine kinase and a response regulator, play pivotal roles in controlling virulence, antimicrobial resistance, and persistence. In parallel, the host immune system employs innate and adaptive mechanisms to recognize and eliminate pathogens. However, a dynamic molecular crosstalk exists, wherein TCSs detect immune-derived cues such as antimicrobial peptides, oxidative stress, and ion limitation, and in turn, modulate bacterial physiology to evade or manipulate host defenses.
Well-studied examples—including PhoPQ, PmrAB, CsrRS, and Agr systems—highlight how TCSs govern immune evasion, biofilm formation, and resistance to last-resort antibiotics such as polymyxins and vancomycin. These processes contribute significantly to chronic infections and treatment failures. Targeting TCSs has therefore emerged as a promising therapeutic strategy. Experimental inhibitors of histidine kinases and response regulators demonstrate potential to attenuate bacterial virulence without exerting strong selective pressure for resistance. Moreover, combining TCS-targeting compounds with conventional antibiotics may enhance treatment efficacy.
This review synthesizes current knowledge of TCS-immune interactions, emphasizes their contribution to antimicrobial resistance and persistence, and explores therapeutic perspectives. Understanding this molecular dialogue provides crucial insights into host-pathogen interactions and offers new opportunities for combating multidrug-resistant infections in the post-antibiotic era.
References
World Health Organization. Prioritization of Pathogens to Guide Discovery, Research and Development of New Antibiotics for Drug-Resistant Bacterial Infections, Including Tuberculosis; World Health Organization: Geneva, Switzerland, 2017; p. 12.
Chairat, S.; Ben Yahia, H.; Rojo-Bezares, B.; Saenz, Y.; Torres, C.; Ben Slama, K. High prevalence of imipenem-resistant and metallo-beta-lactamase-producing Pseudomonas aeruginosa in the Burns Hospital in Tunisia: Detection of a novel class 1 integron. J. Chemother. 2019, 1–7.
Zhe, S.; Qianru, Z.; Liying, Z.; Zhidong, Z.; Ling, J.; He, H. Draft genome sequence of a multidrug-resistant beta-lactamase-harboring Bacillus cereusS66, isolated from China. J. Glob. Antimicrob. Resist. 2019.
Goic-Barisic, I.; Seruga Music, M.; Kovacic, A.; Tonkic, M.; Hrenovic, J. Pan drug-resistant environmental Isolate of Acinetobacter baumannii from Croatia. Microb. Drug Resist. 2017, 23, 494–496.
Li, L.; Yu, T.; Ma, Y.; Yang, Z.; Wang, W.; Song, X.; Shen, Y.; Guo, T.; Kong, J.; Wang, M.; Xu, H. The genetic structures of an Extensively Drug Resistant (XDR) Klebsiella pneumoniae and Its plasmids. Front. Cell Infect. Microbiol. 2018, 8, 446.
Wang, C.Y.; Jerng, J.S.; Chen, K.Y.; Lee, L.N.; Yu, C.J.; Hsueh, P.R.; Yang, P.C. Pandrug-resistant Pseudomonas aeruginosa among hospitalised patients: Clinical features, risk-factors and outcomes. Clin. Microbiol. Infect. 2006, 12, 63–68.
Sonnevend, Á.; Ghazawi, A.; Hashmey, R.; Haidermota, A.; Girgis, S.; Alfaresi, M.; Omar, M.; Paterson, D.L.; Zowawi, H.M.; Pál, T. Multihospital occurrence of pan-resistant Klebsiella pneumoniae sequence type 147 with an ISEcp1-directed blaOXA-181 Insertion in the mgrB gene in the United Arab Emirates. Antimicrob. Agents Chemother. 2017, 61, e00418-17.
Sharba, M. M., Mohammed, A. A., & Mohammed, S. F. (2022). Isolation and Characterization of tannase from isolated Bacillus subtilis.
Rice, L.B. Federal funding for the study of antimicrobial resistance in nosocomial pathogens: No ESKAPE. J. Infect. Dis. 2008, 197, 1079–1081. [PubMed]
Fernandes, M.; Vira, D.; Medikonda, R.; Kumar, N. Extensively and pan-drug resistant Pseudomonas aeruginosa keratitis: Clinical features, risk factors, and outcome. Graefes Arch. Clin. Exp. Ophthalmol. 2016, 254, 315–322. [PubMed]
Ozer, E.A.; Krapp, F.; Hauser, A.R.; Qi, C. Case report of an extensively drug-resistant Klebsiella pneumoniae Infection with genomic characterization of the strain and review of similar cases in the United States. Open. Forum Infect. Dis. 2018, 5.
Peterson, L.R. Bad bugs, no drugs: No ESCAPE revisited. Clin. Infect. Dis. 2009, 49, 992–993.
Cabot, G.; Zamorano, L.; Moya, B.; Juan, C.; Navas, A.; Blazquez, J.; Oliver, A. Evolution of Pseudomonas aeruginosa antimicrobial resistance and fitness under low and high mutation rates. Antimicrob. Agents Chemother. 2016, 60, 1767–1778.
Tsakiridou, E.; Makris, D.; Daniil, Z.; Manoulakas, E.; Chatzipantazi, V.; Vlachos, O.; Xidopoulos, G.; Charalampidou, O.; Zakynthinos, E. Acinetobacter baumannii infection in prior ICU bed occupants is an independent risk factor for subsequent cases of ventilator-associated pneumonia. BioMed. Res. Int. 2014, 2014, 193516.
Martin, R.M.; Bachman, M.A. Colonization, infection, and the accessory genome of Klebsiella pneumoniae. Front. Cell Infect. Microbiol. 2018, 8, 4.
Gaynes, R.; Edwards, J.R. Overview of nosocomial infections caused by gram-negative bacilli. Clin. Infect. Dis. 2005, 41, 848–854.
Landman, D.; Trehan, M.; Panwar, M.; Kochar, S.; Bratu, S.; Quale, J.; Doymaz, M. Evolution of antimicrobial resistance among Pseudomonas aeruginosa, Acinetobacter baumannii and Klebsiella pneumoniae in Brooklyn, NY. J. Antimicrob. Chemother. 2007, 60, 78–82.
Streit, J.M.; Jones, R.N.; Sader, H.S.; Fritsche, T.R. Assessment of pathogen occurrences and resistance profiles among infected patients in the intensive care unit: Report from the SENTRY Antimicrobial Surveillance Program (North America, 2001). Int. J. Antimicrob. Agents 2004, 24, 111–118.
Lingzhi, L.; Haojie, G.; Dan, G.; Hongmei, M.; Yang, L.; Mengdie, J.; Chengkun, Z.; Xiaohui, Z. The role of two-component regulatory system in beta-lactam antibiotics resistance. Microbiol. Res. 2018, 215, 126–129.
Karlsson, U., & Fraenkel, C. J. (2020). Covid-19: risks to healthcare workers and their families. bmj, 371.
Amaria, R. N., Menzies, A. M., Burton, E. M., Scolyer, R. A., Tetzlaff, M. T., Antdbacka, R., ... & Long, G. V. (2019). Neoadjuvant systemic therapy in melanoma: recommendations of the International Neoadjuvant Melanoma Consortium. The Lancet Oncology, 20(7), e378-e389.
Chowdhury, P., Paul, S. K., Kaisar, S., & Moktadir, M. A. (2021). COVID-19 pandemic related supply chain studies: A systematic review. Transportation Research Part E: Logistics and Transportation Review, 148, 102271.
Mira, A.; Apalara, J.; Thyagarajan, R.; Sengstock, D.M.; Kaye, K.S.; Chopra, T. Multidrug-resistant Acinetobacter baumannii: An emerging pathogen among older adults in community hospitals and nursing homes. Clin. Infect. Dis. 2010, 50, 1611–1616.
Martinez, J.L.; Baquero, F. Mutation frequencies and antibiotic resistance. Antimicrob. Agents Chemother. 2000, 44, 1771–1777.
Andam, C.P.; Fournier, G.P.; Gogarten, J.P. Multilevel populations and the evolution of antibiotic resistance through horizontal gene transfer. FEMS Microbiol. Rev. 2011, 35, 756–767.
Sommer, M.O.A.; Dantas, G.; Church, G.M. Functional characterization of the antibiotic resistance reservoir in the human microflora. Science 2009, 325, 1128–1131.
Davies, J.E. Origins, acquisition and dissemination of antibiotic resistance determinants. Ciba Found Symp. 1997, 207, 15–27.
Blanquart, F.; Lehtinen, S.; Lipsitch, M.; Fraser, C. The evolution of antibiotic resistance in a structured host population. J. R. Soc. Interface 2018, 15, 20180040.
Zhou, J.; Lee, S.; Zhao, X.; Dong, Y.; Drlica, K.; Amin, A.; Musser, J.M.; Ramaswamy, S.; Domagala, J. Selection of antibiotic-resistant bacterial mutants: Allelic diversity among fluoroquinolone-resistant mutations. J. Infect. Dis. 2000, 182, 517–525.
Gniadkowski, M. Evolution of extended-spectrum beta-lactamases by mutation. Clin. Microbiol. Infect. 2008, 14, 11–32.
Bush, K. Past and present perspectives on beta-Lactamases. Antimicrob. Agents Chemother. 2018, 62, e01076-18.
Gutkind, G.O.; Di Conza, J.; Power, P.; Radice, M. Beta-lactamase-mediated resistance: A biochemical, epidemiological and genetic overview. Curr. Pharm. Des. 2013, 19, 164–208.
Bajaj, P.; Singh, N.S.; Virdi, J.S. Escherichia coli β-Lactamases: What Really Matters. Front. Microbiol. 2016, 7, 417.
Martinez, J.L. The antibiotic resistome: Challenge and opportunity for therapeutic intervention. Future Med. Chem. 2012, 4, 347–359.
Perry, J.A.; Wright, G.D. The antibiotic resistance “mobilome”: Searching for the link between environment and clinic. Front. Microbiol. 2013, 4, 138.
Corona, F.; Blanco, P.; Alcalde-Rico, M.; Hernando-Amado, S.; Lira, F.; Bernardini, A.; Sanchez, M.B.; Martinez, J.L. The analysis of the antibiotic resistome offers new opportunities for therapeutic intervention. Future Med. Chem. 2016, 8, 1133–1151.
Stover, C.K.; Pham, X.Q.; Erwin, A.L.; Mizoguchi, S.D.; Warrener, P.; Hickey, M.J.; Brinkman, F.S.; Hufnagle, W.O.; Kowalik, D.J.; Lagrou, M.; et al. Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 2000, 406, 959–964.
Veleba, M.; Higgins, P.G.; Gonzalez, G.; Seifert, H.; Schneiders, T. Characterization of RarA, a novel AraC family multidrug resistance regulator in Klebsiella pneumoniae. Antimicrob. Agents Chemother. 2012, 56, 4450–4458.
