Prevalence Of Carbapenem Resistant Pseudomonas Aeruginosa Isolated from Wound Infection and The Genes Responsible for Carbapenemase Production in Najaf Hospitals
Keywords:
Pseudomonas aeruginosa, Carbapenem Resistant genes, ESBLAbstract
Background: Pseudomonas aeruginosa is one of the most prevalent opportunistic human pathogens among Gram-negative bacteria, it is linked to nosocomial infections such as burn and wound infections. The rise of carbapenem-resistant P. aeruginosa (CRPA) is a major therapeutic challenge. The objective of the current study is to specify the frequency carbapenem resistant P. aeruginosa and the associated carbapenemase genes in P. aeruginosa isolated from wound infection
Methods: During the study period, 300 swabs were collected from patients who had wound infections. P. aeruginosa were identified using standard bacteriological and biochemical methods. The Kirby-Bauer disk diffusion method was utilized to investigate the antibiotic susceptibility of using 17 antimicrobial drugs. Multi-druge resistance(MDR) and Extensive-druge resistance (XDR) were identified using international guideline. Extended-spectrum-beta-lactamase (ESBL) production were screened using ceftazidime, ceftriaxone, cefotaxime and aztreonam antibiotics by disk diffusion method. Carbapenem resistance isolates were characterized using imipenem and/or meropenem antibiotics resistance and the double disk diffusion test was used to confirm its production. PCR analysis was conducted to identify ESBL and carbapenem resistance genes (blaCTX-M, blaTEM, blaSHV, blaOXA, blaKPC, blaIMP, bla VIM, blaSIM, bla NDM, bla GIM, bla SPM, bla OXA-48).
Results: from 300 swabs specimen P. aeruginosa isolates were identified in 40 (13.3%) specimens. Antibiotic susceptibility test revealed 13(32.5%) isolates were carbapenem resistant P. aeruginosa, and the highest resistant was to β-lactam class and cephalosporin antibiotics. The results showed 17(42.5%) of isolates were MDR and 23(57.5%) were XDR. PCR assay revealed that blaCTX-M was found in 22(55%) and blaOXA was noticed in 27 (67.5%) of P. aeruginosa isolates. Among 13 CRPA isolates, 1(7.6%) isolate had blaOXA-48, 2(15.3%) isolates had blaIMP, blaSIM and blaVIM for each, 3(23%) carry blaGIM, and 4 (30.7%) had blaNDM. While blaSPM and blaKPC were not found in any isolate.
Conclusion: wound infections showed high rate of XDR and CRPA driven by diverse carbapenem resistance genes, indicating dangerous public health concern
References
Jorgensen JH, Pfaller MA,CarrollKC, Funke G,Landry ML, RichterSS,et al. Manual of clinical microbiology. 11th ed. Washington DC: American Society of Microbiology; 2015. doi: 10.1128/9781555817381.
Lister PD, Wolter DJ, Hanson ND. Antibacterial-resistant Pseu domonas aeruginosa: Clinical impact and complex regulation of chromosomally encoded resistance mechanisms. Clin Microbiol Rev. 2009;22(4):582–610. doi: 10.1128/CMR.00040-09.[PubMed: 19822890]. [PubMedCentral: PMC2772362].
Amini A , Ebrahimzadeh Namvar A. Antimicrobial resistance pattern and presence of beta-lactamase genes in Pseudomonas Iran J Basic Med Sci, Vol. 23, No.11, Nov 2020 1399 Azimi et al. Inherent and acquired carbapenem resistance mechanisms aeruginosa strains isolated from hospitalized patients, Babol Iran. J Med Bacteriol 2019;8:45-50.
Ambler RP. The structure of beta-lactamases. Philos Trans R Soc Lond B Biol Sci 1980;289:321-31.
Hall BG, Salipante SJ, Barlow M. The metallo-beta-lactamases fall into two distinct phylogenetic groups. J Mol Evol 2003;57:249-54.
Nordmann P, Cuzon G, Naas T. The real threat of Klebsiella pneumoniae carbapenemase-producing bacteria. Lancet Infect Dis 2009;9:228-36.
Bijari A, Azimi L, Fallah F, Ardebili A, Lari ER, Lari AR. Involvement of the multidrug efflux pumps in beta-lactams resistant Pseudomonas aerugionsa clinical isolates collected from burn patients in Iran. Infect Disord Drug Targets 2016;16:172-177.
Lari AR, Azimi L, Soroush S, Taherikalani M. Low prevalence of metallo-beta-lactamase in Pseudomonas aeruginosa isolated from a tertiary burn care center in Tehran. Int J Immunopathol Pharmacol 2015;28:384-389.
Armin S, Fallah F, Azimi L, Samadi Kafil H, Ghazvini K, Hasanzadeh S, et al. Warning: spread of NDM-1 in two border towns of Iran. Cell Mol Biol 2018;64:125-129.
Azimi L, Talebi M, Pourshafie MR, Owlia P, Rastegar Lari A. Characterization of carbapenemases in extensively drug resistance Acinetobacter baumannii in a burn care center in Iran. Int J Mol Cell Med 2015;4:46-53.
Mobasseri P, Azimi L, Salehi M, Hosseini F, Fallah F. Multi drug resistance profiles and expression of adeijk and abem in Acinetobacter baumannii collected from humans by Real-time PCR. J Med Bacteriol 2018;7:50-56.
Jean SS, Lee NY, Tang HJ, Lu MC, Ko WC, Hsueh PR. Carbapenem-Resistant Enterobacteriaceae Infections: Taiwan Aspects. Front Microbiol 2018;9:2888.
Livorsi DJ, Chorazy ML, Schweizer ML, Balkenende EC, Blevins AE, Nair R, et al. A systematic review of the epidemiology of carbapenem-resistant Enterobacteriaceae in the United States. Antimicrob Resist Infect Control 2018;7:55.
Logan LK, Weinstein RA. The Epidemiology of Carbapenem-Resistant Enterobacteriaceae: The Impact and Evolution of a Global Menace. J Infect Dis 2017;15:215:S28-S36.
Zhang Y, Wang Q, Yin Y, Chen H, Jin L, Gu B, et al. Epidemiology of carbapenem-resistant Enterobacteriaceae infections: report from the China CRE network. Antimicrob Agents Chemother 2018;62:e01882-17.
Bratu S, Landman D, Haag R, Recco R, Eramo A, Alam M, et al. Rapid spread of carbapenem-resistant Klebsiella pneumoniae in New York City: a new threat to our antibiotic armamentarium. Arch Intern Med 2005;165:1430-5.
Kohler PP, Melano RG, Patel SN, Shafinaz S, Faheem A, Coleman BL, et al. Emergence of Carbapenemase-Producing Enterobacteriaceae, South-Central Ontario, Canada. Emerg Infect Dis 2018;24:1674-82.
Albiger B, Glasner C, Struelens MJ, Grundmann H, Monnet DL, European Survey of Carbapenemase-Producing Enterobacteriaceae (EuSCAPE) working group. Carbapenemase-producing Enterobacteriaceae in Europe: assessment by national experts from 38 countries, May 2015. Euro Surveill 2015;20.
Clinical and Laboratory Standards Institute. (2023). Performance Standards for Antimicrobial Susceptibility Testing; 33rd ed (CLSI M100–Ed33). Wayne, PA: CLSI;
Dallenne, C.; Da Costa, A.;Decré, D.; Favier, C. and Arlet, G. (2010). Development of a set of multiplex PCR assays for the detection of genes encoding important beta-lactamases in Enterobacteriaceae. J Antimicrob. Chemother., 65: 490-495.
Poirel, L.; Héritier, C.; Tolün, V. and Nordmann, P. (2004). Emergence of oxacillinase mediated resistance to imipenem in K.pneumoniae. Antimicrob. Agents Chemother., 48:15–22.
Gondal, A. J., Saleem, S., Jahan, S., Choudhry, N., & Yasmin, N. (2020). Novel carbapenem-resistant klebsiella pneumoniae ST147 coharboring bla NDM-1, bla OXA-48 and extended-spectrum β-lactamases from Pakistan. Infection and Drug Resistance, 2105-2115.
Bradford, P.A.; Bratu, S.; Urban, C.; Visalli, M.; Mariano, N. et al. (2004). Emergence of Carbapenem-Resistant Klebsiella Species Possessing the Class A Carbape- nem-Hydrolyzing KPC-2 and Inhibitor-Resistant TEM-30 β-lactamases in New York City. Clin Infect Dis., 39: 55–60.
Rasheed, J.K.; Jay, C.; Metchock, B.; Berkowitz, F.; Weigel, L.; Crellin, J.; Steward, C.; Hill, B.; Medeiros, A.A. and Tenover, F.C. (1997). Evolution of extended-spectrum β-lactam resistance (SHV-8) in a strain of Escherichia coli during multiple episodes of bacteremia Antimicrob. Agent Chemother., 41: 647-653.
Ellington MJ, Kistler J, Livermore DM, Woodford N. Multiplex PCR for rapid detection of genes encoding acquired metallo-beta-lactamases. J Antimicrob Chemother. 2007 Feb;59(2):321-2. doi: 10.1093/jac/dkl481. Epub 2006 Dec 21. PMID: 17185300.
Lister PD, Wolter DJ, Hanson ND. Antibacterial-resistant Pseu domonas aeruginosa: Clinical impact and complex regulation of chromosomally encoded resistance mechanisms. Clin Microbiol Rev. 2009;22(4):582–610. doi: 10.1128/CMR.00040-09.[PubMed: 19822890]. [PubMedCentral: PMC2772362].
Fallah F, Noori M, Hashemi A, Goudarzi H, Karimi A, Erfanimanesh S, et al. Prevalence of bla NDM, bla PER, bla VEB, bla IMP, and bla VIM Genes among Acinetobacter baumannii Isolated from Two Hospitals of Tehran, Iran. Scientifica (Cairo). 2014;2014:245162. doi: 10.1155/2014/245162. [PubMed: 25133013].
PoorabbasB,MardanehJ,RezaeiZ,KalaniM,PouladfarG,AlamiMH, et al. Nosocomial Infections: Multicenter surveillance of antimicro bial resistance profile of Staphylococcus aureus and Gram negative rods isolated from blood and other sterile body fluids in Iran. Iran J Microbiol. 2015;7(3):127–35. [PubMed: 26668699].
Jain SK, Barman R. Bacteriological Profile of Diabetic Foot Ulcer with Special Reference to Drug-resistant Strains in a Tertiary Care Center in North-East India. Indian J Endocrinol Metab. 2017 Sep-Oct;21(5):688-694. doi: 10.4103/ijem.IJEM_546_16. PMID: 28989875; PMCID: PMC5628537
Bandy A, Wani FA, Mohammed AH, Dar UF, Mallick A, Dar MR, et al. Bacteriological profile of wound infections and antimicrobial resistance in selected gram-negative bacteria. Afri Health Sci. 2022;22(4). 576-586. https://dx.doi.org/10.4314/ahs.v22i4.63
Ahmed EF, Rasmi AH, Darwish AMA, Gad GFM. Prevalence and resistance profile of bacteria isolated from wound infections among a group of patients in upper Egypt: a descriptive cross-sectional study. BMC Res Notes. 2023 Jun 19;16(1):106. doi: 10.1186/s13104-023-06379-y. PMID: 37337258; PMCID: PMC10280819.
Li, X., Cheng, Q., Du, Z., Zhu, S., & Cheng, C. (2021). Microbiological concordance in the management of diabetic foot ulcer infections with osteomyelitis, on the basis of cultures of different specimens at a diabetic foot center in china. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 14, 1493–1503.
Hassan MA, Abd El-Aziz S, Elbadry HM, Samy A, Tamer TM. Prevalence, antimi crobial resistance profile, and characterization of multi-drug resistant bacteria from various infected wounds in North Egypt. Saudi J Biol Sci 2022.
Bangera D, Shenoy SM, Saldanha DRM. Clinico-microbiological study of Pseu domonas aeruginosa in wound infections and the detection of metallo-β-lactamase production. Int Wound J 2016; 13:1299–1302
Rashid Mahmood A, Mansour Hussein N. Study of Antibiotic Resistant Genes in Pseudomonas aeroginosa Isolated from Burns and Wounds. Arch Razi Inst. 2022 Feb 28;77(1):403-411. doi: 10.22092/ARI.2021.356681.1893. PMID: 35891744; PMCID: PMC9288643.
Abdi FA, Motumma AN, Kalayu AA, Abegaz WE (2024) Prevalence and antimicrobial resistant patterns of Pseudomonas aeruginosa among burn patients attending Yekatit 12 Hospital Medical College in Addis Ababa, Ethiopia. PLoS ONE19(3): e0289586. https://doi.org/10.1371/ journal.pone.0289586
Walsh TR, Toleman MA, Poirel L, Nordmann P. Metallo-β-lactamases: the quiet before the storm? Clin Microbiol Rev 2005;18:306–25.
Shashikala RK, Srinivasan S, Devi S. Emerging resistance to car bapenem in hospital acquired Pseudomonas infection: a case of con cern. Indian J Pharmacol 2006;38:287–8.
Pitout JD, Revathi G, Chow BL, Kabera B, Kariuki S, Nordmann P, Poirel L. Metallo-beta-lactamase-producing Pseudomonas aeruginosa isolated from large tertiary centre in Kenya. Clin Microbiol Infect 2008;14:755–9.
Hashemi AB, Nakhaei Moghaddam M, Forghanifard MM, Yousefi E. Detection of blaOXA-10 and blaOXA-48 genes in Pseudomonas aeruginosa clinical isolates by multiplex PCR. J Med Microbiol Infect Dis, 2021; 9 (3): 142-147. DOI: 10.52547/JoMMID.9.3.142
de Almeida Silva K de CF, Calomino MA, Deutsch G, de Castilho SR, de Paula GR, Esper LMR, et al. Molecular characterization of multidrug-resistant (MDR) Pseudomonas aeruginosa isolated in a burn center. Burns 2017;43:137–43. doi:10.1016/j.burns.2016.07.002
Adjei CB, Govinden U, Moodley K, Essack SY. Molecular characterisation of multidrug-resistant P. aeruginosa from a private hospital in Durban, South Africa. South African. J Infect Dis 2017:1–4.
Al-Agamy MH, Jeannot K, El-Mahdy TS, Samaha HA, Shibl AM, Plésiat P, et al. Diversity of Molecular Mechanisms Conferring Carbapenem Resistance to Pseudomonas aeruginosa Isolates from Saudi Arabia. Can J Infect Dis Med Microbiol 2016;2016:1–7. https://doi.org/10.1155/2016/4379686.
Al Dawodeyah HY, Obeidat N, Abu-Qatouseh LF, Shehabi AA. Antimicrobial resistance and putative virulence genes of Pseudomonas aeruginosa isolates from patients with respiratory tract infection. Germs 2018;8:31–40. https:// doi.org/10.18683/germs.2018.1130
Azeez, Z. F., & Al-daraghi, W. A. H. (2018). Molecular Phylogenetic Study in 16S Rrna Gene Among Acinetobacter baumannii Isolates Characteristic Producing To Esbls Genes in Burn Infection. 30(4), 579–585.
Wang, W., & Wang, X. (2020). Prevalence of metallo-β-lactamase genes among Pseudomonas aeruginosa isolated from various clinical samples in China. Journal of Laboratory Medicine, 44(4), 197–203.
Ghasemian A, Salimian Rizi K, Rajabi Vardanjani H, Nojoomi F. Prevalence of Clinically Isolated Metallo-beta-lactamase-producing Pseudomonas aeruginosa, Coding Genes, and Possible Risk Factors in Iran. Iran J Pathol. 2018 Winter;13(1):1-9. PMID: 29731790; PMCID: PMC5929383.
El Menofy NG, Tawfick MM, Badawy MSEM. Molecular study of carbapenem-resistant Pseudomonas aeruginosa causing wound infection in an Egyptian tertiary hospital. J Infect Dev Ctries. 2025 Jul 28;19(7):997-1006. doi: 10.3855/jidc.19953. PMID: 40720456.
Khater ES, AlFaki AA (2022) Detection of carbapenem resistant Pseudomonas aeruginosa in tertiary care hospital in Saudi Arabia. Microbes Infect Dis 3: 693–702. doi: 10.21608/MID.2022.142569.1320.
Bahrami M, Mmohammadi-Sichani M, Karbasizadeh V. Prevalence of < em > SHV, TEM, CTX-M and < em > OXA-48 β-Lactamase Genes in Clinical Isolates of Pseudomonas aeruginosa in Bandar-Abbas, Iran. 2018, 5(4):86–90.
Elnour Rahma Mohamed S, Alobied A, Mohamed Hussien W, Ibrahim Saeed M. blaOXA-48 Carbapenem Resistant Pseudomonas aeruginosa Clinical Isolates in Sudan. J Adv Microbiol. 2018;10(4):1–5.
Borah VV, Saikia KK, Hazarika NK. First report on the detection of OXA-48 β-lactamase gene in Escherichia coli and Pseudomonas aeruginosa co infection isolated from a patient in a Tertiary Care Hospital in Assam. Indian J Med Microbiol. 2016;34(2):252–3.
Abdelraheem WM, Ismail DE, Hammad SS. Prevalence of blaOXA-48 and other carbapenemase encoding genes among carbapenem-resistant Pseudomonas aeruginosa clinical isolates in Egypt. BMC Infect Dis. 2024 Nov 11;24(1):1278. doi: 10.1186/s12879-024-10123-7. PMID: 39528967; PMCID: PMC11556172.