Physiological Disruption of Epithelial Barrier Integrity by Pathogenic Fungi and Its Systemic Implications
Keywords:
fungal pathogenesis, epithelial barrier, Candida, Aspergillus, fungal toxins, barrier integrity, systemic infectionAbstract
Epithelial barriers of the skin, gastrointestinal tract, respiratory tract, and urogenital surfaces provide the first line of defense against pathogenic invasion while supporting diverse commensal microbiota. These barriers rely on tight and adherent junctions, mucosal secretions, and immune surveillance to maintain integrity. Pathogenic fungi overcome these defenses by employing virulence strategies such as adhesion through specialized surface proteins, morphological transitions, biofilm formation, secretion of hydrolytic enzymes, and release of toxins, including the Candida albicans peptide candidalysin. These processes compromise junctional complexes, disrupt epithelial polarity, and trigger inflammatory responses, resulting in increased permeability and barrier dysfunction. While many fungal infections remain superficial, opportunistic pathogens such as C. albicans, Aspergillus fumigatus, and Cryptococcus neoformans can breach epithelial barriers, disseminate systemically, and cause life-threatening disease, particularly in immunocompromised individuals. Host epithelial and immune cells respond to fungal invasion through pattern recognition receptors, cytokine release, and recruitment of phagocytes, yet fungal immune evasion frequently undermines clearance. Understanding the molecular mechanisms of fungal-epithelial interactions and systemic dissemination provides critical insights for developing targeted therapies that preserve barrier function and strengthen antifungal immunity.
References
Moens, E., & Veldhoen, M. (2012). Epithelial barrier biology: good fences make good neighbours. Immunology, 135(1), 1-8.
Moens, E., & Veldhoen, M. (2012). Epithelial barrier biology: good fences make good neighbours. Immunology, 135(1), 1-8.
Rezaee, F., & Georas, S. N. (2014). Breaking barriers. New insights into airway epithelial barrier function in health and disease. American journal of respiratory cell and molecular biology, 50(5), 857-869.
Leiva-Juárez, M. M., Kolls, J. K., & Evans, S. E. (2018). Lung epithelial cells: therapeutically inducible effectors of antimicrobial defense. Mucosal immunology, 11(1), 21-34.
Barros, B. C., Almeida, B. R., Barros, D. T., Toledo, M. S., & Suzuki, E. (2022). Respiratory epithelial cells: more than just a physical barrier to fungal infections. Journal of Fungi, 8(6), 548.
Gow, N. A., Latge, J. P., & Munro, C. A. (2017). The fungal cell wall: structure, biosynthesis, and function. Microbiology spectrum, 5(3), 10-1128.
White, T. C., Findley, K., Dawson, T. L., Scheynius, A., Boekhout, T., Cuomo, C. A., ... & Saunders, C. W. (2014). Fungi on the skin: dermatophytes and Malassezia. Cold spring harbor perspectives in medicine, 4(8), a019802.
Lopes, J. P., & Lionakis, M. S. (2022). Pathogenesis and virulence of Candida albicans. Virulence, 13(1), 89-121.
Ho, J., Yang, X., Nikou, S. A., Kichik, N., Donkin, A., Ponde, N. O., ... & Naglik, J. R. (2019). Candidalysin activates innate epithelial immune responses via epidermal growth factor receptor. Nature communications, 10(1), 2297.
Kullberg BJ, Arendrup MC (2015) Invasive candidiasisThe New England Journal of Medicine 373:1445–1456.
Moyes, D. L., Wilson, D., Richardson, J. P., Mogavero, S., Tang, S. X., Wernecke, J., ... & Naglik, J. R. (2016). Candidalysin is a fungal peptide toxin critical for mucosal infection. Nature, 532(7597), 64-68.
Naglik, J. R., Gaffen, S. L., & Hube, B. (2019). Candidalysin: discovery and function in Candida albicans infections. Current opinion in microbiology, 52, 100-109.
Richardson, J. P., Willems, H. M., Moyes, D. L., Shoaie, S., Barker, K. S., Tan, S. L., ... & Peters, B. M. (2018). Candidalysin drives epithelial signaling, neutrophil recruitment, and immunopathology at the vaginal mucosa. Infection and immunity, 86(2), 10-1128.
Pappas PG, Lionakis MS, Arendrup MC, et al. Invasive candidiasis. Nat Rev Dis Primers. 2018. May 11;4:18026.
Latgé, J. P. (1999). Aspergillus fumigatus and Aspergillosis. Clin. Microbiol. Rev. 12, 310–350.
Croft, C. A., Culibrk, L., Moore, M. M., & Tebbutt, S. J. (2016). Interactions of Aspergillus fumigatus conidia with airway epithelial cells: a critical review. Frontiers in microbiology, 7, 472.
Denker B.M., Nigam S.K. Molecular structure and assembly of the tight junction. Am. J. Physiol. 1998;274:F1–F9. doi: 10.1152/ajprenal.1998.274.1.F1. [DOI] [PubMed] [Google Scholar]
Forster C. Tight junctions and the modulation of barrier function in disease. Histochem. Cell Biol. 2008;130:55–70. doi: 10.1007/s00418-008-0424-9.
Dunne, K., Reece, E., McClean, S., Doyle, S., Rogers, T. R., Murphy, P., & Renwick, J. (2023). Aspergillus fumigatus Supernatants Disrupt Bronchial Epithelial Monolayers: Potential Role for Enhanced Invasion in Cystic Fibrosis. Journal of fungi (Basel, Switzerland), 9(4), 490.
Chamilos, G., & Carvalho, A. (2020). Aspergillus fumigatus DHN-melanin. The Fungal Cell Wall: An Armour and a Weapon for Human Fungal Pathogens, 17-28.
Vu, K., Tham, R., Uhrig, J. P., Thompson III, G. R., Na Pombejra, S., Jamklang, M., ... & Gelli, A. (2014). Invasion of the central nervous system by Cryptococcus neoformans requires a secreted fungal metalloprotease. MBio, 5(3), 10-1128.
Jong, A., Wu, C. H., Gonzales-Gomez, I., Kwon-Chung, K. J., Chang, Y. C., Tseng, H. K., Cho, W. L., & Huang, S. H. (2012). Hyaluronic acid receptor CD44 deficiency is associated with decreased Cryptococcus neoformans brain infection. The Journal of biological chemistry, 287(19), 15298–15306.
Lee, H. H., Carmichael, D. J., Ríbeiro, V., Parisi, D. N., Munzen, M. E., Charles-Niño, C. L., ... & Martinez, L. R. (2023). Glucuronoxylomannan intranasal challenge prior to Cryptococcus neoformans pulmonary infection enhances cerebral cryptococcosis in rodents. PLoS pathogens, 19(4), e1010941.
Liu, Y., Zhang, Y., Zhao, X., Lu, W., Zhong, Y., & Fu, Y. V. (2023). Antifungal peptide SP1 damages polysaccharide capsule of Cryptococcus neoformans and enhances phagocytosis of macrophages. Microbiology Spectrum, 11(2), e04562-22.
Chang Y. C., Jong A., Huang S., Zerfas P., Kwon-Chung K. J. (2006) CPS1, a homolog of the Streptococcus pneumoniae type 3 polysaccharide synthase gene, is important for the pathobiology of Cryptococcus neoformans. Infect. Immun. 74, 3930–3938
Jong A., Wu C. H., Chen H. M., Luo F., Kwon-Chung K. J., Chang Y. C., Lamunyon C. W., Plaas A., Huang S. H. (2007) Identification and characterization of CPS1 as a hyaluronic acid synthase contributing to the pathogenesis of C. neoformans infection. Eukaryot. Cell 6, 1486–1496
Al-Huthaifi, A. M., Radman, B. A., Al-Alawi, A. A., Mahmood, F., & Liu, T.-B. (2024). Mechanisms and Virulence Factors of Cryptococcus neoformans Dissemination to the Central Nervous System. Journal of Fungi, 10(8), 586.
Ibrahim AS, Spellberg B, Walsh TJ, Kontoyiannis DP. Pathogenesis of mucormycosis. Clin Infect Dis. 2012;54(suppl 1):S16–S22.
Gunathilaka, S. S., Rajapakse, S., & Bandara, N. (2024). Targeting cell surface GRP78 for the treatment of mucormycosis: potential and promising therapeutic approach. Reviews and Research in Medical Microbiology, 10-1097.
Farmakiotis, D., & Kontoyiannis, D. P. (2016). Mucormycoses. Infectious Disease Clinics, 30(1), 143-163.
Pat, Y., Yazici, D., D’Avino, P., Li, M., Ardicli, S., Ardicli, O., & Akdis, C. A. (2024). Recent advances in the epithelial barrier theory. International immunology, 36(5), 211-222.
Zihni, C., Mills, C., Matter, K., & Balda, M. S. (2016). Tight junctions: from simple barriers to multifunctional molecular gates. Nature reviews Molecular cell biology, 17(9), 564-580.
Akdis, C. A. (2021). Does the epithelial barrier hypothesis explain the increase in allergy, autoimmunity and other chronic conditions?. Nature Reviews Immunology, 21(11), 739-751.
Chidambaram, S. B., Essa, M. M., Rathipriya, A. G., Bishir, M., Ray, B., Mahalakshmi, A. M., ... & Monaghan, T. M. (2022). Gut dysbiosis, defective autophagy and altered immune responses in neurodegenerative diseases: Tales of a vicious cycle. Pharmacology & therapeutics, 231, 107988.
Brenchley, J. M., & Douek, D. C. (2012). Microbial translocation across the GI tract. Annual review of immunology, 30(1), 149-173.
DeHart, D. J., Agwu, D. E., Julian, N. C., & Washburn, R. G. (1997). Binding and germination of Aspergillus fumigatus conidia on cultured A549 pneumocytes. Journal of Infectious Diseases, 175(1), 146-150.
Barros, B. C., Almeida, B. R., Barros, D. T., Toledo, M. S., & Suzuki, E. (2022). Respiratory epithelial cells: more than just a physical barrier to fungal infections. Journal of Fungi, 8(6), 548.
Brown, G. D., Denning, D. W., Gow, N. A., Levitz, S. M., Netea, M. G., & White, T. C. (2012). Hidden killers: human fungal infections. Science translational medicine, 4(165), 165rv13-165rv13.
Köhler, J. R., Hube, B., Puccia, R., Casadevall, A., & Perfect, J. R. (2017). Fungi that infect humans. Microbiology spectrum, 5(3), 10-1128.
Hoyer, L. L., Green, C. B., Oh, S. H., & Zhao, X. (2008). Discovering the secrets of the Candida albicans agglutinin-like sequence (ALS) gene family–a sticky pursuit. Medical mycology, 46(1), 1-15.
Moyes, D. L., Wilson, D., Richardson, J. P., Mogavero, S., Tang, S. X., Wernecke, J., ... & Naglik, J. R. (2016). Candidalysin is a fungal peptide toxin critical for mucosal infection. Nature, 532(7597), 64-68.
Moyes, D. L., Runglall, M., Murciano, C., Shen, C., Nayar, D., Thavaraj, S., ... & Naglik, J. R. (2010). A biphasic innate immune MAPK response discriminates between the yeast and hyphal forms of Candida albicans in epithelial cells. Cell host & microbe, 8(3), 225-235.
Brown, R., Priest, E., Naglik, J. R., & Richardson, J. P. (2021). Fungal toxins and host immune responses. Frontiers in microbiology, 12, 643639.
Iliev, I. D., & Leonardi, I. (2017). Fungal dysbiosis: immunity and interactions at mucosal barriers. Nature Reviews Immunology, 17(10), 635-646.
Hallen-Adams, H. E., & Suhr, M. J. (2017). Fungi in the healthy human gastrointestinal tract. Virulence, 8(3), 352-358.
Williams, D. W., Jordan, R. P., Wei, X. Q., Alves, C. T., Wise, M. P., Wilson, M. J., & Lewis, M. A. (2013). Interactions of Candida albicans with host epithelial surfaces. Journal of oral Microbiology, 5(1), 22434.
Nikou, S. A., Kichik, N., Brown, R., Ponde, N. O., Ho, J., Naglik, J. R., & Richardson, J. P. (2019). Candida albicans interactions with mucosal surfaces during health and disease. Pathogens, 8(2), 53.
Wang, F., Wang, Z., & Tang, J. (2023). The interactions of Candida albicans with gut bacteria: a new strategy to prevent and treat invasive intestinal candidiasis. Gut pathogens, 15(1), 30.
Zhong, L., Zhang, S., Tang, K., Zhou, F., Zheng, C., Zhang, K., ... & Zhang, G. (2020). Clinical characteristics, risk factors and outcomes of mixed Candida albicans/bacterial bloodstream infections. BMC Infectious Diseases, 20(1), 810.
Russell, C. M., Rybak, J. A., Miao, J., Peters, B. M., & Barrera, F. N. (2023). Candidalysin: Connecting the pore forming mechanism of this virulence factor to its immunostimulatory properties. Journal of Biological Chemistry, 299(2).
Richardson, J.P.; Brown, R.; Kichik, N.; Lee, S.; Priest, E.; Mogavero, S.; Maufrais, C.; Wickramasinghe, D.N.; Tsavou, A.; Kotowicz, N.K.; et al. Candidalysins Are a New Family of Cytolytic Fungal Peptide Toxins. mBio 2022, 13, e03510-21.
Blagojevic, M., Camilli, G., Maxson, M., Hube, B., Moyes, D. L., Richardson, J. P., & Naglik, J. R. (2021). Candidalysin triggers epithelial cellular stresses that induce necrotic death. Cellular microbiology, 23(10), e13371.
Westman, J., Plumb, J., Licht, A., Yang, M., Allert, S., Naglik, J. R., ... & Maxson, M. E. (2022). Calcium-dependent ESCRT recruitment and lysosome exocytosis maintain epithelial integrity during Candida albicans invasion. Cell reports, 38(1).
Alonso-Monge, R., Gresnigt, M. S., Román, E., Hube, B., & Pla, J. (2021). Candida albicans colonization of the gastrointestinal tract: A double-edged sword. PLoS pathogens, 17(7), e1009710.
Barros, B. C. S. C., Almeida, B. R., Barros, D. T. L., Toledo, M. S., & Suzuki, E. (2022). Respiratory Epithelial Cells: More Than Just a Physical Barrier to Fungal Infections. Journal of Fungi, 8(6), 548.
Ben-Ghazzi, N., Moreno-Velasquez, S., Seidel, C., Thomson, D., Denning, D. W., Read, N. D., ... & Gago, S. (2021). Characterisation of Aspergillus fumigatus endocytic trafficking within airway epithelial cells using high-resolution automated quantitative confocal microscopy. Journal of Fungi, 7(6), 454.
Croft, C. A., Culibrk, L., Moore, M. M., & Tebbutt, S. J. (2016). Interactions of Aspergillus fumigatus conidia with airway epithelial cells: a critical review. Frontiers in microbiology, 7, 472.
Kerr, S. C., Fischer, G. J., Sinha, M., McCabe, O., Palmer, J. M., Choera, T., ... & Fahy, J. V. (2016). FleA expression in Aspergillus fumigatus is recognized by fucosylated structures on mucins and macrophages to prevent lung infection. PLoS pathogens, 12(4), e1005555.
Yan, T., Han, J., & Yu, X. (2016). E-cadherin mediates adhesion of Aspergillus fumigatus to non-small cell lung cancer cells. Tumor Biology, 37(12), 15593-15599.
Gravelat, F. N., Beauvais, A., Liu, H., Lee, M. J., Snarr, B. D., Chen, D., ... & Sheppard, D. C. (2013). Aspergillus galactosaminogalactan mediates adherence to host constituents and conceals hyphal β-glucan from the immune system. PLoS pathogens, 9(8), e1003575.
Gaziano, R., Sabbatini, S., & Monari, C. (2023). The interplay between Candida albicans, vaginal mucosa, host immunity and resident microbiota in health and disease: an overview and future perspectives. Microorganisms, 11(5), 1211.
Netea, M. G., Joosten, L. A., Van Der Meer, J. W., Kullberg, B. J., & Van De Veerdonk, F. L. (2015). Immune defence against Candida fungal infections. Nature Reviews Immunology, 15(10), 630-642.
Rosentul, D. C., Delsing, C. E., Jaeger, M., Plantinga, T. S., Oosting, M., Costantini, I., ... & Netea, M. G. (2014). Gene polymorphisms in pattern recognition receptors and susceptibility to idiopathic recurrent vulvovaginal candidiasis. Frontiers in microbiology, 5, 483.
Jaeger, M., Carvalho, A., Cunha, C., Plantinga, T. S., Van De Veerdonk, F., Puccetti, M., ... & Netea, M. G. (2016). Association of a variable number tandem repeat in the NLRP3 gene in women with susceptibility to RVVC. European Journal of Clinical Microbiology & Infectious Diseases, 35(5), 797-801.
Camilli, G., Griffiths, J. S., Ho, J., Richardson, J. P., & Naglik, J. R. (2020). Some like it hot: Candida activation of inflammasomes. PLoS pathogens, 16(10), e1008975.
Naglik, J. R. (2014). Candida immunity. New Journal of Science, 2014(1), 390241.
Taylor, D. L., Hollingsworth, T. N., McFarland, J. W., Lennon, N. J., Nusbaum, C., & Ruess, R. W. (2014). A first comprehensive census of fungi in soil reveals both hyperdiversity and fine‐scale niche partitioning. Ecological monographs, 84(1), 3-20.
Köhler, J. R., Casadevall, A., & Perfect, J. (2015). The spectrum of fungi that infects humans. Cold Spring Harbor perspectives in medicine, 5(1), a019273.
Denham, S. T., & Brown, J. C. (2018). Mechanisms of pulmonary escape and dissemination by Cryptococcus neoformans. Journal of Fungi, 4(1), 25.
Shoham, S., & Levitz, S. M. (2005). The immune response to fungal infections. British journal of haematology, 129(5), 569-582.
Strickland, A. B., & Shi, M. (2021). Mechanisms of fungal dissemination. Cellular and Molecular Life Sciences, 78(7), 3219-3238.
Voelz, K., & May, R. C. (2010). Cryptococcal interactions with the host immune system. Eukaryotic cell, 9(6), 835-846.
Rajasingham, R., Smith, R. M., Park, B. J., Jarvis, J. N., Govender, N. P., Chiller, T. M., ... & Boulware, D. R. (2017). Global burden of disease of HIV-associated cryptococcal meningitis: an updated analysis. The Lancet infectious diseases, 17(8), 873-881.
Romani, L. (2011). Immunity to fungal infections. Nature Reviews Immunology, 11(4), 275-288.
Shoham, S., & Levitz, S. M. (2005). The immune response to fungal infections. British journal of haematology, 129(5), 569-582.
Burgess, T. B., Condliffe, A. M., & Elks, P. M. (2022). A fun-guide to innate immune responses to fungal infections. Journal of Fungi, 8(8), 805.
Mayer, F. L., Wilson, D., & Hube, B. (2013). Candida albicans pathogenicity mechanisms. Virulence, 4(2), 119-128.
Chamilos, G., & Carvalho, A. (2020). Aspergillus fumigatus DHN-melanin. The Fungal Cell Wall: An Armour and a Weapon for Human Fungal Pathogens, 17-28.
May, R. C., Stone, N. R., Wiesner, D. L., Bicanic, T., & Nielsen, K. (2016). Cryptococcus: from environmental saprophyte to global pathogen. Nature Reviews Microbiology, 14(2), 106-117.
Garfoot, A. L., Shen, Q., Wüthrich, M., Klein, B. S., & Rappleye, C. A. (2016). The Eng1 β-glucanase enhances histoplasma virulence by reducing β-glucan exposure. MBio, 7(2), 10-1128.
Dawood, I. R. A., & Tahseen, T. H. (2024). Examination Of The Use Of Picture Card Technology To Help Elementary School Students Develop Their Basketball Skills. International Journal of Cognitive Neuroscience and Psychology, 2(2), 1-7.
Tahseen, T. H., Jawad, K. A. H., Dakhil, H. O., Khamis, H., & Abbas, S. (2024). The effectiveness of attention and kinesthetic awareness and their relationship to the accuracy of performing the forehand and backhand stroke in badminton. Sciencia Journal, 1, 77-85.
Thomas Jr, C. F., & Limper, A. H. (2007). Current insights into the biology and pathogenesis of Pneumocystis pneumonia. Nature Reviews Microbiology, 5(4), 298-308.
Ibrahim, A. S., Spellberg, B., Walsh, T. J., & Kontoyiannis, D. P. (2012). Pathogenesis of mucormycosis. Clinical infectious diseases, 54(suppl_1), S16-S22.
Yadav, M., & Chauhan, N. S. (2022). Microbiome therapeutics: exploring the present scenario and challenges. Gastroenterology report, 10, goab046.
Ogunrinola, G. A., Oyewale, J. O., Oshamika, O. O., & Olasehinde, G. I. (2020). The human microbiome and its impacts on health. International journal of microbiology, 2020(1), 8045646.
Zuo, T., Wong, S. H., Cheung, C. P., Lam, K., Lui, R., Cheung, K., ... & Ng, S. C. (2018). Gut fungal dysbiosis correlates with reduced efficacy of fecal microbiota transplantation in Clostridium difficile infection. Nature communications, 9(1), 3663.
Rao, C., Coyte, K. Z., Bainter, W., Geha, R. S., Martin, C. R., & Rakoff-Nahoum, S. (2021). Multi-kingdom ecological drivers of microbiota assembly in preterm infants. Nature, 591(7851), 633-638.
Papaioannou NE, Beniata OV, Vitsos P, Tsitsilonis O, Samara P. Harnessing the immune system to improve cancer therapy. Ann Transl Med. (2016) 4:261. doi: 10.21037/ atm.2016.04.01
Datta K, Hamad M. Immunotherapy of fungal infections. Immunol Investig. (2015) 44:738–76.
Qadri, H., Shah, A. H., Alkhanani, M., Almilaibary, A., & Mir, M. A. (2023). RETRACTED: Immunotherapies against human bacterial and fungal infectious diseases: A review. Frontiers in Medicine, 10, 1135541.
Ulrich, S., & Ebel, F. (2020). Monoclonal Antibodies as Tools to Combat Fungal Infections. Journal of Fungi, 6(1), 22.
Kozieł, M. J., Kowalska, K., & Piastowska-Ciesielska, A. W. (2020). Claudins: new players in human fertility and reproductive system cancers. Cancers, 12(3), 711.
Robinson, K., Deng, Z., Hou, Y., & Zhang, G. (2015). Regulation of the intestinal barrier function by host defense peptides. Frontiers in veterinary science, 2, 57.
Kozieł, M. J., Ziaja, M., & Piastowska-Ciesielska, A. W. (2021). Intestinal barrier, claudins and mycotoxins. Toxins, 13(11), 758.
Tomalka, J., Azodi, E., Narra, H. P., Patel, K., O'Neill, S., Cardwell, C., Hall, B. A., Wilson, J. M., & Hise, A. G. (2015). β-Defensin 1 plays a role in acute mucosal defense against Candida albicans. Journal of immunology (Baltimore, Md. : 1950), 194(4), 1788–1795.
Huang, S. X., Islam, M. N., O'neill, J., Hu, Z., Yang, Y. G., Chen, Y. W., ... & Snoeck, H. W. (2014). Efficient generation of lung and airway epithelial cells from human pluripotent stem cells. Nature biotechnology, 32(1), 84.
Koceva, H., Amiratashani, M., Akbarimoghaddam, P., Hoffmann, B., Zhurgenbayeva, G., Gresnigt, M. S., ... & Mosig, A. S. (2025). Deciphering respiratory viral infections by harnessing organ-on-chip technology to explore the gut–lung axis. Open biology, 15(3), 240231.
Huh D, Leslie DC, Matthews BD, Fraser JP, Jurek S, Hamilton GA, et al. A human disease model of drug toxicity-induced pulmonary edema in a lung-on-a-chip microdevice. Sci Transl Med. (2012) 4:159ra147.
Lanik, W. E., Luke, C. J., Nolan, L. S., Gong, Q., Frazer, L. C., Rimer, J. M., ... & Good, M. (2023). Microfluidic device facilitates in vitro modeling of human neonatal necrotizing enterocolitis–on-a-chip. Jci Insight, 8(8), e146496